Профиль-математика Задачи по математике решайте как мы, решайте вместе с нами, решайте лучше нас!
RSS

Алгебра 10-11

Алгебра 10 класс

Тригонометрические уравнения на ЕГЭ

Решите неравенство  lg4(x2 – 26)4 – 4lg2(x2 – 26)2 ≤ 240.

Экономические задачи ЕГЭ

Что необходимо понимать прежде, чем решать задачи на проценты и кредиты ЕГЭ по математике. Попробуем разобраться с механизмом кредитования населения. Итак, пусть банк выдал кредит в сумме S рублей под r%…

Задача. 15 января планируется взять кредит в банке на 19 месяцев. Условия его возвращения таковы: 1-го числа каждого месяца долг возрастает на r% по сравнению с концом предыдущего месяца; со 2-го по 14-е число каждого месяца необходимо выплатить часть долга; 15-го числа каждого месяца долг должен быть на одну и ту же сумму меньше долга на 15-е число предыдущего месяца. Известно, что общая сумма выплат после полного погашения кредита на 30% больше суммы, взятой в кредит. Найдите r.

Задача. 15 января планируется взять кредит в банке на 25 месяцев. Условия его возвращения таковы: 1-го числа каждого месяца долг возрастает на r% по сравнению с концом предыдущего месяца; со 2-го по 14-е число каждого месяца необходимо выплатить часть долга; 15-го числа каждого месяца долг должен быть на одну и ту же сумму меньше долга на 15-е число предыдущего месяца. Известно, что общая сумма денег, которую нужно выплатить банку за весь срок кредитования, на 13% больше, чем сумма, взятая в кредит. Найдите r%.

Задача. 15 января планируется взять кредит в банке на сумму 1,8 млн рублей на 24 месяца. Условия его возвращения таковы: 1-го числа каждого месяца долг возрастает на 2% по сравнению с концом предыдущего месяца; со 2-го по 14-е число каждого месяца необходимо выплатить часть долга; 15-го числа каждого месяца долг должен быть на одну и ту же сумму меньше долга на 15-е число предыдущего месяца. Какую сумму нужно вернуть банку в течение первого года кредитования?

Задача. В июле планируется взять кредит в банке на сумму 4,5 млн рублей на срок 9 лет. Условия его возврата таковы: каждый январь долг возрастает на r% по сравнению с концом предыдущего года; с февраля по июнь каждого года необходимо выплатить часть долга; в июле каждого года долг должен быть на одну и ту же сумму меньше долга на июль предыдущего года. Найдите r, если известно, что наибольший годовой платёж по кредиту составит не более 1,4 млн рублей, а наименьший – не менее 0,6 млн рублей.

Задача. 15 января планируется взять кредит в банке на 21 месяц. Условия его возвращения таковы: 1-го числа каждого месяца долг возрастает на 1% по сравнению с концом предыдущего месяца; со 2-го по 14-е число каждого месяца необходимо выплатить часть долга; 15-го числа каждого месяца долг должен быть на одну и ту же сумму меньше долга на 15-е число предыдущего месяца. Известно, что на 11-й месяц кредитования нужно выплатить 44,4 тыс. рублей. Какую сумму нужно вернуть банку в течение всего срока кредитования?

Задача. 15 января планируется взять кредит в банке на 24 месяца. Условия его возвращения таковы: 1-го числа каждого месяца долг возрастает на 3% по сравнению с концом предыдущего месяца; со 2-го по 14-е число каждого месяца необходимо выплатить часть долга; 15-го числа каждого месяца долг должен быть на одну и ту же сумму меньше долга на 15-е число предыдущего месяца. Известно, что в течение первого года кредитования нужно вернуть банку 466,5 тыс. рублей. Какую сумму планируется взять в кредит?

Задача. 31 декабря 2014 года Алексей взял в банке 9282000 рублей в кредит под 10% годовых. Схема выплаты кредита следующая: 31 декабря каждого следующего года банк начисляет проценты на оставшуюся сумму долга (то есть увеличивает долг на 10%), затем Алексей переводит в банк Х рублей. Какой должна быть сумма Х, чтобы Алексей выплатил долг четырьмя равными платежами (то есть за четыре года)?

Задача. 31 декабря 2014 года Арсений взял в банке 1 млн рублей в кредит. Схема выплаты кредита следующая: 31 декабря каждого следующего года банк начисляет проценты на оставшуюся сумму долга (то есть увеличивает долг на определенное число процентов), затем Арсений переводит очередной транш. Арсений выплатил кредит за два транша, переведя в первый раз 550 тыс. рублей, во второй 638,4 тыс. рублей. Под какой процент банк выдал кредит Арсению?

Задача. В начале 2001 года Алексей приобрел ценную бумагу за 11000 рублей. В конце каждого года цена бумаги возрастает на 4000 рублей. В начале любого года Алексей может продать бумагу и положить вырученные деньги на банковский счет. Каждый год сумма на счете будет увеличиваться на 10%. В начале какого года Алексей должен продать ценную бумагу, чтобы через 15 лет после покупки этой бумаги сумма на банковском счете была наибольшей?

Параметры в заданиях ЕГЭ

Задача. Найдите все значения параметра а, при каждом из которых уравнение имеет ровно два решения

Задача. Найдите все значения параметра а, при каждом из которых неравенство

||x + 2a|-3a| + ||3x-a| + 4a| ≤ 7x + 24 выполняется для всех значений х∈[0; 7].

Задача. Найдите все значения а, при каждом из которых система уравнений имеет более одного решения.

Задача. Найдите все значения а, при каждом из которых система уравнений имеет более двух решений.

Задача. Найдите все значения а, при каждом из которых система уравнений имеет более двух решений.

Задача. Найдите все значения параметра а, при каждом из которых множество значений 

Задача. Найдите все значения а, при каждом из которых множество значений функции

Задача. Найдите все значения а, при каждом из которых функция

f(x) = x2-4|x-a2|-8x имеет хотя бы одну точку максимума.

Задача. Найдите все значения а, при каждом из которых функция

f(x) = x2-3|x-a2|-5x  имеет более двух точек экстремума.

Задача. Найдите все значения параметра а, при каждом из которых уравнение

Свойства чисел в заданиях ЕГЭ

Задача. В целочисленной последовательности а1=3, а2, … , аn-1, an=109 сумма любых двух соседних членов последовательности равна или 1, или 3, или 13. а) Приведите пример такой последовательности. б) Может ли такая последовательность состоять из 32 членов? в) Какое наименьшее число членов может быть в такой последовательности?

Задача. Изначально на доске написаны числа 3 и 6. За один ход два числа, написанные на доске, стираются, а вместо них пишутся два других, одно из которых является суммой только что стертых чисел, а второе равно 2х+2, где х – одно из только что стертых чисел. а) Может ли за несколько ходов на доске оказаться число 48? б) Может ли после 80 ходов одно из двух чисел, написанных на доске, оказаться числом 630? в) Сделали 519 ходов. Какое наименьшее значение может принимать разность большего и меньшего из полученных чисел?

Задача. На доске написаны числа 10, 11, 12, 13, … , 50. За один ход разрешается стереть произвольные четыре числа таких, что их сумма больше 134 и не равна ни одной из сумм четвёрок чисел, стёртых на предыдущих ходах.  а) Можно ли сделать 5 ходов по описанным правилам? Если да, то приведите пример этих ходов. б) Можно ли сделать 10 ходов по описанным правилам? в) Какое наибольшее число ходов можно сделать?

Задача. На доске было написано 30 натуральных чисел (необязательно различных), каждое их которых не превосходит 40. Среднее арифметическое написанных чисел равнялось 7. Вместо каждого из чисел на доске написали число, в два раза меньшее первоначального. Числа, которые после этого оказались меньше 1, с доски стёрли. а) Могло ли оказаться так, что среднее арифметическое чисел, оставшихся на доске, больше 14? б)  Могло ли среднее арифметическое оставшихся на доске чисел оказаться больше 12, но меньше 13? в) Найдите наибольшее возможное значение среднего арифметического чисел, которые остались на доске.

Задача. Числа 1, 2, 3, 4, 5, 6, 7, 8, 9, 16 произвольно делят на три группы так, чтобы в каждой группе было хотя бы одно число. Затем вычисляют значение среднего арифметического чисел в каждой из групп (для группы из единственного числа среднее арифметическое равно этому числу). а) Могут ли быть одинаковыми два из этих трёх значений средних арифметических в группах из разного количества чисел? б) Могут ли быть одинаковыми все три значения средних арифметических? в) Найдите наименьшее возможное значение наибольшего из получаемых трёх средних арифметических.

Задача. а) Приведите пример четырёхзначного числа, произведение цифр которого в 10 раз больше суммы цифр этого числа. б) Существует ли такое четырёхзначное число, произведение цифр которого в 175 раз больше суммы цифр этого числа? в) Найдите все четырёхзначные числа, произведение цифр которых в 50 раз больше суммы цифр этого числа?

Задача. Ученики одной школы писали тест. Результатом каждого ученика является целое неотрицательное число баллов. Ученик считается сдавшим тест, если он набрал не менее 83 баллов. Из-за того, что задания оказались слишком трудными, было принято решение всем участникам теста добавить по 5 баллов, благодаря чему количество сдавших тест увеличилось. а) Могло ли оказаться так, что после этого средний балл участников, не сдавших тест, понизился? б) Могло ли оказаться так, что после этого средний балл участников, сдавших тест, понизился, и средний балл участников, не сдавших тест, тоже понизился? в) Известно, что первоначально средний балл участников теста составил 90, средний балл участников, сдавших тест, составил 100, а средний балл участников, не сдавших тест, составил 75. После добавления баллов средний балл участников, сдавших тест, стал равен 103, а не сдавших тест – 79. При каком наименьшем числе участников теста возможна такая ситуация?

Задача. Каждый из группы учащихся сходил в кино или в театр, при этом возможно, что кто-то из них мог сходить и в кино, и в театр. Известно, что в театре мальчиков было не более 3/10 от общего числа учащихся группы, посетивших театр, а в кино мальчиков было не более 5/12 от общего числа учащихся группы, посетивших кино. а) Могло ли быть в группе 8 мальчиков, если дополнительно известно, что всего в группе было 16 учащихся? б) Какое наибольшее количество мальчиков могло быть в группе, если дополнительно известно, что всего в группе было 16 учащихся? в) Какую наименьшую долю могли составлять девочки от общего числа учащихся в группе без дополнительного условия пунктов а и б?

Задача. а) Приведите пример трёхзначного числа, у которого ровно 5 натуральных делителей. б) Существует ли такое трёхзначное число, у которого ровно 15 натуральных делителей? в) Сколько существует таких трёхзначных чисел, у которых ровно 20 натуральных делителей?

Задача. Назовём натуральное число палиндромом, если в его десятичной записи все цифры расположены симметрично (совпадают первая и последняя цифры, вторая и предпоследняя, и т.д.). Например, числа 121 и 953359 являются палиндромами, а числа 10 и 953359 не являются палиндромами. а) Приведите пример числа-палиндрома, который делится на 15.  б) Сколько существует пятизначных чисел-палиндромов, делящихся на 15?  в) Найдите 37-е по величине число-палиндром, которое делится на 15.

Комментирование закрыто.

Наверх