Профиль-математика Задачи по математике решайте как мы, решайте вместе с нами, решайте лучше нас! НАШЕ МЕНЮ НИЖЕ ВАМ В ПОМОЩЬ.
RSS
Рубрика "Новости"

Экономические задачи ЕГЭ 2022 (производство продукции, бригада, бизнес-план)

ЕГЭ 2022 ФИПИ. Вариант 7. Задача 15.

Производство х тыс. единиц продукции в q=2x2+5x+10 млн рублей в год. При цене p тыс. рублей за единицу годовая прибыль от продажи этой продукции (в млн рублей) составляет px-q. При каком наименьшем значении p через 12 лет суммарная прибыль может составить не менее 744 млн рублей при некотором значении х?

Решение.

Так как при цене p тыс. рублей за единицу годовая прибыль от продажи этой продукции (в млн рублей) составляет px-q, то за 12 лет суммарная прибыль составит 12px-12q млн рублей, и по условию эта сумма должна быть не менее 744 млн рублей при некотором значении х.

Получаем неравенство: 12px-12q ≥ 744.

Подставим данное значение q=2x2+5x+10. Получим:

12px-12(2x2+5x+10) ≥ 744. Упростим, разделив обе части неравенства на 12.

px-(2x2+5x+10) ≥ 62;

px-2x2-5x-10 ≥ 62;

-2x2+px-5x-10 ≥ 62;

-2x2+(p-5)x-10-62 ≥ 0;

2x2-(p-5)x+72 ≤ 0.

Для того, чтобы это неравенство имело решения, дискриминант квадратного уравнения 2x2-(p-5)x+72 = 0 должен быть неотрицательным.

D=b2-4ac=(p-5)2-4∙2∙72=(p-5)2-576 ≥ 0;

(p-5)2-242 ≥ 0;

(p-5+24)(p-5-24) ≥ 0;

(p+19)(p-29) ≥ 0.

Последнее неравенство будет верным при p ≤ -19 или p ≥ 29. Но значение p не может быть отрицательным, значит, наименьшее значение p=29.

Мы ответили на вопрос задачи, но интересно знать значение х. Подставим значение p=29 в неравенство 2x2-(p-5)x+72 ≤ 0.

2-24х+72 ≤ 0;

х2-12х+36 ≤ 0;

(х-6)2 ≤ 0. Единственно возможное значение х=6.

Таким образом, при производстве 6 тысяч единиц продукции при цене 29 тысяч рублей за единицу через 12 лет прибыль составит не менее 744 млн рублей.

Ответ: 29.

Экономические задачи ЕГЭ    Это страница с нужной вам задачей

ЕГЭ 2022 ФИПИ. Вариант 8. Задача 15.

Производство х тыс. единиц продукции в q=3x2+6x+13 млн рублей в год. При цене p тыс. рублей за единицу годовая прибыль от продажи этой продукции (в млн рублей) составляет px-q. При каком наименьшем значении p через пять лет суммарная прибыль может составить не менее 70 млн рублей при некотором значении х?

Решение.

Так как при цене p тыс. рублей за единицу годовая прибыль от продажи этой продукции (в млн рублей) составляет px-q, а за пять лет суммарная прибыль должна составить не менее 70 млн рублей при некотором значении х, то за год эта возможная прибыль будет не менее 70:5=14 млн. рублей.

Получаем неравенство: px-q ≥ 14.

Подставим данное значение q=3x2+6x+13. Получим:

px-3x2-6x-13 ≥ 14;

-3x2+px-6x-27 ≥ 0;

3x2-(p-6)x+27 ≤ 0.

Для того, чтобы это неравенство имело решения дискриминант квадратного уравнения 3x2-(p-6)x+27 = 0 должен быть неотрицательным.

D=b2-4ac=(p-6)2-4∙3∙27=(p-6)2-324 ≥ 0;

(p-6)2-182 ≥ 0;

(p-6+18)(p-6-18) ≥ 0;

(p+12)(p-24) ≥ 0.

Последнее неравенство будет верным при p ≤ -12 или p ≥ 24. Но значение p не может быть отрицательным, значит, наименьшее значение p=24.

Подставим найденное значение p=24 в неравенство 3x2-(p-6)x+27 ≤ 0.

2-18х+27 ≤ 0;

х2-6х+9 ≤ 0;

(х-3)2 ≤ 0. Единственно возможное значение х=3.

Таким образом, при производстве 3 тысяч единиц продукции при цене 24 тысячи рублей за единицу через пять лет прибыль составит не менее 70 млн рублей.

Ответ: 24.

ЕГЭ 2022 ФИПИ. Вариант 20. Задача 15.

Бригаду из 30 рабочих нужно распределить по двум объектам. Если на первом объекте работает p человек, то каждый из них получает в сутки 200p рублей. Если на втором объекте работает p человек, то каждый из них получает в сутки (50p+300) рублей. Как нужно распределить рабочих по объектам, чтобы их суммарная суточная зарплата оказалась наименьшей? Сколько рублей в этом случае придётся заплатить за сутки всем рабочим?

Решение.

Пусть в 1-й бригаде работает p человек, тогда во 2-й бригаде (30-p) человек. Тогда суммарная суточная зарплата составит:

200p∙p+(50(30-p)+300)(30-p). Упростим выражение.

200p2+(1500-50p+300)(30-p)=

=200p2+(1800-50p)(30-p)=

=200p2+54000-1500p-1800p+50p2=

250p2-3300p+54000.

Составим функцию F(p) – зависимости суточной зарплаты от количества рабочих p на 1-м объекте и исследуем её на минимум с помощью производной.

F(p)=250p2-3300+54000.

F’(p)=500p-3300.

F’(p)=0 при 500p=3300; p=6,6 – критическая точка.

Так как F’(p) < 0 при p < 6,6 и F’(p) > 0 при p > 6,6, то

p=6,6 – точка минимума функции F’(p).

Но так как p – целое число, то округлим значение 6,6 до 7.

p = 6,6 ≈ 7.

Итак, на 1-м объекте будут работать 7 человек,

а на 2-м объекте 30-7=23 человека.

Следовательно, суммарная суточная зарплата составит:

F(7)=250 ∙ 72 -3300 ∙ 7+54000 = 250∙49-23100+54000 =

= 12250+54000-23100 = 66250-23100 = 43150 (рублей).

Ответ: 1-й объект – 7 рабочих; 2-й объект – 23 рабочих; 43150 рублей – суммарная суточная зарплата.

ЕГЭ 2022 ФИПИ. Вариант 27. Задача 15.

По бизнес-плану четырёхлетний проект предполагает начальное вложение 25 млн рублей. По итогам каждого года планируется прирост вложенных средств на 20 % по сравнению с началом года. Начисленные проценты остаются вложенными в проект. Кроме этого, сразу после начислений процентов нужны дополнительные вложения: целое число n млн рублей и в первый, и во второй годы, а также целое число m млн рублей и в третий, и в четвёртый годы. Найдите наименьшее значение n, при котором первоначальные вложения за два года как минимум удвоятся, и наименьшее значение m, такое, что при найденном ранее значении n первоначальные вложения за четыре года вырастут как минимум в четыре раза.

Решение.

1 год. Итоги 1,2∙25=30 (здесь и далее все величины в млн рублей).

Вложение 30+n.

2 год. Итоги 1,2(30+n)=36+1,2n.

Вложение 36+1,2n +n=36+2,2n.

Так как за два года первоначальные вложения как минимум удвоятся, то

36+2,2n ≥ 2∙25;

2,2n ≥ 50-36;

2,2n ≥ 14;

n ≥ 140:22;

n ≥ 6,36… .

n = 7 – наименьшее целое.

3 год. Итоги 1,2(36+2,2∙7)=1,2(36+15,4)=1,2∙51,4=61,68.

Вложение 61,68+m.

4 год. Итоги 1,2(61,68+m)=74,016+1,2m.

Вложение. 74,016+2,2m.

Так как за четыре года первоначальные вложения вырастут как минимум в четыре раза, то

74,016+2,2m ≥ 4∙25;

2,2m ≥ 100-74,016;

2,2m ≥ 25,984;

m ≥ 259,84:22;

m ≥ 11,81… .

m = 12 – наименьшее целое.

Ответ: 7 млн рублей и 12 млн рублей.

ЕГЭ 2022 ФИПИ. Вариант 28. Задача 15.

По бизнес-плану четырёхлетний проект предполагает начальное вложение 20 млн рублей. По итогам каждого года планируется прирост вложенных средств на 15 % по сравнению с началом года. Начисленные проценты остаются вложенными в проект. Кроме этого, сразу после начислений процентов нужны дополнительные вложения: целое число n млн рублей и в первый, и во второй годы, а также целое число m млн рублей и в третий, и в четвёртый годы. Найдите наименьшее значение n, при котором первоначальные вложения за два года как минимум удвоятся, и наименьшее значение m, такое, что при найденном ранее значении n первоначальные вложения за четыре года как минимум утроятся.

Решение.

1 год. Итоги 1,15∙20=23 (здесь и далее все величины в млн рублей).

Вложение 23+n.

2 год. Итоги 1,15(23+n)=26,45+1,15n.

Вложение 26,45+1,15n+n=26,45+2,15n.

Так как за два года первоначальные вложения как минимум удвоятся, то

26,45+2,15n ≥ 2∙20;

2,15n ≥ 40-26,45;

2,15n ≥ 13,55;

n ≥ 1355:215;

n ≥ 6,30… .

n = 7 – наименьшее целое.

3 год. Итоги 1,15(26,45+2,15∙7)=1,15(26,46+15,05)=1,15∙41,5=47,725.

Вложение 47,725+m.

4 год. Итоги 1,15(47,725+m)=54,88375+1,15m.

Вложение. 54,88375+2,15m.

Так как за четыре года первоначальные вложения как минимум утроятся, то

54,88375+2,15m ≥ 3∙20;

2,15m ≥ 60-54,88375;

2,15m ≥ 5,11625;

m ≥ 511,625:215;

m ≥ 2,379… .

m = 3 – наименьшее целое.

Ответ: 7 млн рублей и 3 млн рублей.

ЕГЭ 2022 ФИПИ. Вариант 30. Задача 15.

По бизнес-плану четырёхлетний проект предполагает начальное вложение 10 млн рублей. По итогам каждого года планируется прирост вложенных средств на 12 % по сравнению с началом года. Начисленные проценты остаются вложенными в проект. Кроме этого, сразу после начислений процентов нужны дополнительные вложения: целое число n млн рублей и в первый, и во второй годы, а также целое число m млн рублей и в третий, и в четвёртый годы. Найдите наименьшее значение n, при котором первоначальные вложения за два года вырастут как минимум в полтора раза, и наименьшее значение m, такое, что при найденном ранее значении n первоначальные вложения за четыре года как минимум утроятся.

Решение.

1 год. Итоги 1,12∙10=11,2 (здесь и далее все величины в млн рублей).

Вложение 11,2+n.

2 год. Итоги 1,12(11,2+n)=12,544+1,12n.

Вложение 12,544+1,12n+n=12,544+2,12n.

Так как за два года первоначальные вложения вырастут как минимум в полтора раза, то

12,544+2,12n ≥ 1,5∙10;

2,12n ≥ 15-12,544;

2,12n ≥ 2,456;

n ≥ 245,6:212;

n ≥ 1,16… .

n = 2 – наименьшее целое.

Итак, в проекте 12,544 + 2,12∙2=16,784 млн рублей.

3 год. Итоги 1,12∙16,784=18,79808.

Вложение 18,79808+m.

4 год. Итоги 1,12(18,79808+m)=21,0538496+1,12m.

Вложение. 21,0538496+2,12m.

Так как за четыре года первоначальные вложения как минимум утроятся, то

21,0538496+2,12m ≥ 3∙10;

2,12m ≥ 30-21,0538496;

2,12m ≥ 8,9461504;

m ≥ 894,61504:212;

m ≥ 4,22… .

m = 5 – наименьшее целое.

Ответ: 2 млн рублей и 5 млн рублей.

 

Проценты и кредиты ЕГЭ 2022. Часть 4

ЕГЭ 2022 ФИПИ. Вариант 3. Задача 15.

По вкладу «А» банк в конце каждого года увеличивает на 20 % сумму, имеющуюся на вкладе в начале года, а по вкладу «Б» — увеличивает эту сумму на 12 % в течение каждого из первых двух лет. Найдите наибольшее натуральное число процентов, начисленное за третий год по вкладу «Б», при котором за все три года этот вклад будет менее выгоден, чем вклад «А».

Решение.

Обозначим искомое число процентов через r.

Оформим рассуждения по условию задачи в виде таблицы.

Так как вклад «Б» будет менее выгоден, чем вклад «А», то справедливо неравенство:

1,122 ∙S + 1,122 ∙S ∙0,01r < 1,23 ∙S.

Разделим обе части неравенства на S.

1,122 ∙0,01r < 1,23 -1,122;

1,2544 ∙0,01r < 1,728 -1,2544;

1,2544 ∙0,01r < 0,4736;

1,2544r < 47,36;

r < 47,36 : 1,2544;

r < 37,75…

r = 37 – наибольшее натуральное число процентов, начисленное за третий год по вкладу «Б», при котором за все три года этот вклад будет менее выгоден, чем вклад «А».

Ответ: 37.

Экономические задачи ЕГЭ    Это страница с нужной вам задачей

ЕГЭ 2022 ФИПИ. Вариант 4. Задача 15.

По вкладу «А» банк в конце каждого года увеличивает на 10 % сумму, имеющуюся на вкладе в начале года, а по вкладу «Б» — увеличивает эту сумму на 14 % в течение каждого из первых двух лет. Найдите наименьшее натуральное число процентов, начисленное за третий год по вкладу «Б», при котором за все три года этот вклад будет более выгоден, чем вклад «А».

Решение.

Обозначим искомое число процентов через r.

Оформим рассуждения по условию задачи в виде таблицы.

Так как вклад «Б» будет менее выгоден, чем вклад «А», то справедливо неравенство:

1,142 ∙S + 1,142 ∙S ∙0,01r > 1,13 ∙S.

Разделим обе части неравенства на S.

1,142 ∙0,01r > 1,13 -1,142;

1,2996 ∙0,01r > 1,331 -1,2996;

1,2996 ∙0,01r > 0,0304;

1,2996 > 3,04;

r > 3,04 : 1,2996;

r > 2,33…

r = 3 – наименьшее натуральное число процентов, начисленное за третий год по вкладу «Б», при котором за все три года этот вклад будет более выгоден, чем вклад «А».

Ответ: 3.

ЕГЭ 2022 ФИПИ. Вариант 17. Задача 15.

Александр хочет купить пакет акций быстрорастущей компании. В начале года у Александра не было денег на покупку акций, а пакет стоил 100 000 рублей. В середине каждого месяца Александр откладывает на покупку пакета акций одну и туже сумму, а в конце месяца пакет дорожает, но не более чем на 30 %. Какую наименьшую сумму нужно откладывать Александру каждый месяц, чтобы через некоторое время купить желаемый пакет акций?

Решение.

1-й месяц. Александр не смог купить акции за 100 тысяч рублей. Он отложил Х тысяч рублей

2-й месяц. Акции стоят 1,3 ∙100 тыс. рублей. Александр отложил Хтыс. рублей.

3-й месяц. Акции стоят 1,32 ∙100 тыс. рублей. Александр отложил Х тыс. рублей.

4-й месяц. Акции стоят 1,33 ∙100 тыс. рублей. Александр отложил Хтыс. рублей.

…………………………………………………………………………………………………

n-й месяц. Акции стоят 1,3n-1 ∙100 тыс. рублей. Александр отложил Х тыс. рублей.

Итак, за n месяцев Александр отложил nХ тысяч рублей, и наконец, может купить акции, т.е.

Нужно найти минимальное целое значение n, при котором производная будет менять знак с минуса на плюс. Это значение n и будет точкой минимума функции

Производная отрицательна при n ∙ ln1,3 -1 < 0. Решаем неравенство:

ln1,3n < 1;

ln1,3n < lne;

1,3n < e. Помним, что е ≈ 2,72…

Так как n – количество месяцев, то будем подбирать целое значение показателя степени так, чтобы знак неравенства поменялся.

Если n = 2, то 1,32 = 1,69 < e;

Если n = 3, то 1,33 = 2,197 < e;

Если n = 4, то 1,34 = 2,8561 > e.

Таким образом, производная X(n) поменяет знак с минуса на плюс на промежутке, содержащем n = 4. Это наименьшее целое значение n, при котором функция

Это означает, что Александру достаточно было откладывать по 54925 рублей в течение четырёх месяцев, чтобы купить пакет акций быстрорастущей компании.

Ответ: 54925 рублей.

ЕГЭ 2022 ФИПИ. Вариант 18. Задача 15.

Сергей хочет купить пакет акций быстрорастущей компании. В начале года у Сергея не было денег на покупку акций, а пакет стоил 160 000 рублей. В середине каждого месяца Сергей откладывает на покупку пакета акций одну и туже сумму, а в конце месяца пакет дорожает, но не более чем на 25 %. Какую наименьшую сумму нужно откладывать Сергею каждый месяц, чтобы через некоторое время купить желаемый пакет акций?

Решение.

1-й месяц. Сергей не смог купить акции за 160 тысяч рублей. Он отложил Х тысяч рублей

2-й месяц. Акции стоят 1,25 ∙160 тыс. рублей. Александр отложил Х тыс. рублей.

3-й месяц. Акции стоят 1,252 ∙160 тыс. рублей. Александр отложил Х тыс. рублей.

4-й месяц. Акции стоят 1,253 ∙160 тыс. рублей. Александр отложил Х тыс. рублей.

…………………………………………………………………………………………………

n-й месяц. Акции стоят 1,25n-1 ∙160 тыс. рублей. Александр отложил Х тыс. рублей.

Итак, за n месяцев Александр отложил nХ тысяч рублей, и наконец, может купить акции, т.е.

Нужно найти минимальное целое значение n, при котором производная будет менять знак с минуса на плюс. Это значение n и будет точкой минимума функции

Производная отрицательна при n ∙ ln1,25 -1 < 0. Решаем неравенство:

ln1,25n < 1;

ln1,25n < lne;

1,25n < e. Помним, что е ≈ 2,72…

Так как n – количество месяцев, то будем подбирать целое значение показателя степени так, чтобы знак неравенства поменялся.

Если n = 2, то 1,252 = 1,5625 < e;

Если n = 3, то 1,253 ≈ 1,953 < e;

Если n = 4, то 1,254 ≈ 2,4 < e;

Если n = 5, то 1,255 ≈ 3,05 > e.

Таким образом, производная X(n) поменяет знак с минуса на плюс на промежутке, содержащем n = 5. Это наименьшее целое значение n, при котором функция

Это означает, что Сергею достаточно было откладывать по 78125 рублей в течение пяти месяцев, чтобы купить пакет акций быстрорастущей компании.

Ответ: 78125 рублей.

ЕГЭ 2022 ФИПИ. Вариант 19. Задача 15.

Цена ценной бумаги на конец года вычисляется по формуле

S=1,1So + 2000, где So – цена этой ценной бумаги на начало года в рублях. Максим может приобрести ценную бумагу, а может положить деньги на банковский счёт, на котором сумма увеличивается за год на 12 %. В начале любого года Максим может продать бумагу и положить все вырученные деньги на банковский счёт, а также снять деньги с банковского счёта и купить ценную бумагу. В начале 2021 года у Максима было 80 тыс. рублей, которые он может положить на банковский счёт или может приобрести на них ценную бумагу. Какая наибольшая сумма может быть у Максима через четыре года? Ответ дайте в рублях.

Решение.

По условию у Максима 80 тыс. рублей, которые он может или положить на счёт или купить ценную бумагу, т.е. So = 80 тыс. рублей.

Если в начале 2021 года Максим положит деньги на банковский счёт, то на конец года у него будет 1,12 So.

Запишем эту сумму в виде: 1,1So + 0,02So и сравним её с ценой ценной бумаги на конец года: 1,1So + 2000.

Так как 0,02So = 0,02 ∙ 80000 = 1600 < 2000, то выгоднее купить ценную бумагу.

Итак, если в начале 2021 года Максим купит ценную бумагу, то на конец года у него будет 1,1 ∙ 80000 + 2000 = 90000 рублей. Оставить ценную бумагу или продать?

Проверим значение 0,02So = 0,02 ∙ 90000 = 1800 < 2000. Значит, продавать ценную бумагу рано.

На конец 2022 года у Максима будет

1,1 ∙ 90000 + 2000 = 101000 рублей.

Оцениваем значение 0,02So = 0,02 ∙ 101000 = 2020 > 2000.

Следовательно, в начале 2023 года Максиму выгоднее продать ценную бумагу и положить деньги на банковский счёт.

На конец 2023 года у него может быть 1,12So = 1,12 ∙ 101000 = 113120 рублей.

На конец 2024 года у Максима может быть 1,12So = 1,12 ∙ 113120 = 126694,4 рублей.

Ответ: 126694,4 рублей.

ЕГЭ 2022 ФИПИ. Вариант 33. Задача 15.

15 июня планируется взять кредит в банке на сумму 1300 тысяч рублей на 16 месяцев. Условия его возврата таковы:

— 11-го числа каждого месяца долг возрастает на r % по сравнению с концом предыдущего месяца;

— со 2-го по 14-е число каждого месяца необходимо выплатить часть долга;

— 15-го числа каждого месяца с 1-го по 15-й долг должен быть на одну и ту же сумму меньше долга на 15-е число предыдущего месяца;

— 15-го числа 15-го месяца долг составит 100 тысяч рублей;

— к 15-му числу 16-го месяца кредит должен быть полностью погашен. Найдите r, если известно, что общая сумма выплат после полного погашения кредита составит 1636 тысяч рублей.

Решение.

За 15 месяцев банку заплатили 1300-100=1200 тысяч рублей основного долга,

что составляет 1200 : 15 = 80 тысяч рублей – сумму, на которую ежемесячно уменьшается долг.

Однако, r % ежемесячно нужно выплачивать с суммы остатка долга, начиная с выданной суммы кредита 1300 тысяч рублей, а затем с суммы за вычетом 80 тысяч рублей ежемесячно. Проценты считаются так:

1 месяц. 1300 ∙ 0,01r = 13r;

2 месяц (1300-80) ∙ 0,01r = 1220 ∙ 0,01r = 12,2r;

3 месяц (1220-80) ∙ 0,01r =1140 ∙ 0,01r = 11,4r;

4 месяц (1140-80) ∙ 0,01r =1060 ∙ 0,01r = 10,6r и так далее.

Заметим, что последовательность чисел 13r; 12,2r; 11,4r; 10,6r и т.д. представляет собой арифметическую прогрессию с первым членом

а1 = 13r и разностью d=-0,8r. Нам нужно найти сумму 15-ти членов этой арифметической прогрессии. Воспользуемся формулой:

Итак, банку придётся отдать 1200 тысяч рублей плюс 111r тысяч рублей процентов за первые 15 месяцев и ещё за 16-й месяц долг 100 тысяч рублей плюс проценты с этой суммы, т.е. r % от 100 тысяч (это 0,01r ∙ 100 = r). Общая сумма выплат по условию равна 1636 тысяч рублей. Получим равенство:

1200+111r+100+r = 1636;

112r = 336;

r = 3.

Ответ: 3%.

ЕГЭ 2022 ФИПИ. Вариант 34. Задача 15.

15 мая планируется взять кредит в банке на 17 месяцев. Условия его возврата таковы:

— 1-го числа каждого месяца долг возрастает на 2 % по сравнению с концом предыдущего месяца;

— со 2-го по 14-е число каждого месяца необходимо выплатить часть долга;

— 15-го числа каждого месяца с 1-го по 16-й долг должен быть на 50 тысяч рублей меньше долга на 15-е число предыдущего месяца;

— к 15-му числу 17-го месяца кредит должен быть полностью погашен. Какую сумму планируется взять в кредит, если общая сумма выплат после полного его погашения составит 1472 тысячи рублей?

Решение.

Обозначим через Х сумму, которую нужно будет выплатить банку к 15-му числу 17-го месяца в счёт основного долга.

За 16 месяцев банку заплатят 16 ∙ 50 = 800 тысяч рублей основного долга.

Значит, 1472-800=672 тысячи рублей – это проценты за 16 месяцев,

а также за 17-й месяц сумма Х с процентами, т.е. Х+0,02Х=1,02Х.

Итак, взятая сумма кредита (800+Х) тысяч рублей, и нам надо подсчитать проценты с этой суммы за первые 16 месяцев кредитования.

Рассуждаем: в первый месяц банк начислит 2 % на сумму (800+Х), во второй месяц 2 % на сумму (750+Х), затем на (700+Х), на (650+х) и т.д. А в 16-й месяц кредитования банк начислит 2 % на сумму (50+Х) тысяч рублей.

Таким образом, нам надо найти значение выражения:

0,02 ∙ ((800+Х)+(750+Х)+(700+Х)+…+(50+Х)).

Сумма в скобках – это сумма арифметической прогрессии с первым членом

Это проценты за первые 16 месяцев кредитования.

Итак, получим равенство:

1,02Х+136+0,32Х= 672;

1,34Х=672-136;

1,34Х=536;

Х=400.

За 17 месяц в счёт основного долга нужно выплатить 400 тысяч рублей. Тогда в кредит планируется взять 800+400=1200 тысяч рублей.

Ответ: 1 200 000 рублей.

ЕГЭ 2022 ФИПИ. Вариант 36. Задача 15.

31 декабря 2014 года Михаил взял в банке некоторую сумму в кредит под 10% годовых. Схема выплаты кредита следующая: 31 декабря каждого следующего года банк начисляет проценты на оставшуюся сумму долга (то есть увеличивает долг на 10%), затем Михаил переводит в банк 2928200 рублей. Какую сумму взял Михаил в банке, если он выплатил долг четырьмя равными платежами (то есть за четыре года)?

I способ решения. Если кредит на S рублей полностью погашается за n ежегодных выплат, равных X1, X2, X3, …, Xn, осуществленных после начисления r% по вкладу, то применяем формулу:

Кредит Михаила S полностью погашается за 4 платежа по 2928200 рублей каждый, после начисления r = 10% годовых каждый год на оставшуюся сумму долга. Таким образом, так как X1=X2=X3=X4=2928200, получаем сумму взятого кредита:

Окончательно S = 2000000 4,641 = 9282000 рублей.

Ответ: 9282000.

II способ решения (традиционный).

Пусть Михаил взял в банке S рублей.

1) Банк начислил на эту сумму 10% и долг составил 1,1S рублей. Михаил выплатил 2928200 рублей. Долг составил (1,1S-2928200) рублей.

2) Банк начислил 10% и долг составил 1,1(1,1S-2928200) рублей. Михаил выплатил 2928200 рублей. Долг составил (1,1(1,1S-2928200)-2928200) рублей.

3) Банк начислил 10% и долг составил 1,1(1,1(1,1S-2928200)-2928200) рублей. Михаил выплатил 2928200 рублей.

Долг составил (1,1(1,1(1,1S-2928200)-2928200)-2928200) рублей.

4) Банк начислил 10% и долг составил

1,1(1,1(1,1(1,1S-2928200)-2928200)-2928200). Банк выплатил 2928200 рублей, и долг был полностью погашен. Составим равенство:

1,1(1,1(1,1(1,1S-2928200)-2928200)-2928200)-2928200=0;

1,14⋅ S-1,13⋅2928200-1,12⋅2928200-1,1⋅2928200-2928200=0;

1,4641S-1,331⋅2928200-1,21⋅2928200-1,1⋅2928200-2928200=0;

1,4641S-4,641⋅2928200=0;

1,4641S=4,641⋅2928200;

S=4,641⋅2000000;

S=9 282000.

Ответ: 9 282 000.

Примечание. Если обозначить 2 928 200 рублей через Х, то записи решения были бы короче.

Смотрите сами.

Итак, обозначим каждый из четырёх ежегодных платежей через Х.

Пусть Х=2928200 рублей, а взял Михаил в банке S рублей.

1) Банк начислил на эту сумму 10% и долг составил 1,1S. Михаил выплатил Х рублей. Долг составил 1,1S-Х.

2) Банк начислил 10% и долг составил 1,1(1,1S-Х)=1,12 ∙ S-1,1X. Михаил выплатил X. Долг составил 1,12 ∙ S-1,1X-X.

3) Банк начислил 10% и долг составил 1,1(1,12∙S-1,1X-X)=1,13∙S-1,12X-1,1X. Михаил выплатил X рублей.

Долг составил 1,13∙S-1,12X-1,1X-X.

4) Банк начислил 10% и долг составил

1,1(1,13∙S-1,12X-1,1X-X)=1,14∙S-1,13X-1,12 X-1,1X.

Банк выплатил X, и долг был полностью погашен. Получаем равенство:

1,14∙S-1,13X-1,12 X-1,1X-Х=0.

1,14∙S=1,13X+1,12 X+1,1X+Х=0;

1,4641S=1,331X+1,21X+1,1X+X;

1,4641S=4,641X;

S=4,641X :1,4641. Так как Х=2928200, то

S=4,641∙2928200 :1,4641;

S=4,641⋅2000000;

S=9 282 000.

Ответ: 9 282 000.

Ниже простые и очень полезные формулы:

k2 S = (k +1) Х .  ( I**)

k 3 S = (k2 + k + 1) Х.  ( II**)

k 4 S = (k3 + k2 + k + 1) Х( III**)

Здесь: S – сумма кредита, выданная банком под r%, которая полностью погашается платежами по Х рублей каждый. Значение k=1+0,01r. Показатель степени с основанием k – это количество платежей по Х рублей.

В рассмотренной задаче мы рассуждениями получили формулу ( III**).

Проценты и кредиты ЕГЭ 2022. Часть 3

ЕГЭ 2022 ФИПИ. Вариант 21. Задача 15.

15 января планируется взять кредит в банке на некоторый срок (целое число месяцев). Условия его возвращения таковы:

— 1-го числа каждого месяца долг возрастает на 1% по сравнению с концом предыдущего месяца;

— со 2-го по 14-е число каждого месяца необходимо выплатить часть долга;

— 15-го числа каждого месяца долг должен быть на одну и ту же сумму меньше долга на 15-е число предыдущего месяца.

На сколько месяцев планируется взять кредит, если известно, что общая сумма выплат после полного погашения кредита на 20% больше суммы, взятой в кредит? (Считайте, что округления при вычислении платежей не производятся.)

Решение. Пусть кредит берётся на n месяцев. Обозначим через х ежемесячный платёж без процентов. Итак, взято хn рублей, нужно вернуть хn плюс проценты. Разница в 20% от суммы, взятой в кредит – это как раз проценты. Получаем равенство:

0,2xn=(xn+x(n-1)+x(n-2)+…+x)⋅0,01. Вынесем х из правой части равенства и разделим на х обе части равенства.

0,2n=(n+(n-1)+(n-2)+…+1)⋅0,01.

В скобках сумма арифметической прогрессии.

0,2n=(n+1)/2 ⋅ n ⋅ 0,01 → 0,2=(n+1)/2 ⋅ 0,01  → 20=(n+1)/2;

n+1=40 → n=39. Кредит берётся на 39 месяцев.

Ответ: 39.

Экономические задачи ЕГЭ    Это страница с нужной вам задачей

ЕГЭ 2022 ФИПИ. Вариант 22. Задача 15.

15 января планируется взять кредит в банке на 49 месяцев. Условия его возвращения таковы:

— 1-го числа каждого месяца долг возрастает на 1% по сравнению с концом предыдущего месяца;

— со 2-го по 14-е число каждого месяца необходимо выплатить часть долга;

— 15-го числа каждого месяца долг должен быть на одну и ту же сумму меньше долга на 15-е число предыдущего месяца.

Какую сумму планируется взять в кредит, если общая сумма выплат после полного его погашения составит 2 млн рублей? (Считайте, что округления при вычислении платежей не производятся.)

Решение. Обозначим через х ежемесячный платёж без процентов. Итак, взято 49х рублей, нужно вернуть 49х плюс проценты. Посчитаем проценты:

(49х+48х+47х+…+2х+х) ⋅ 0,01=(49х+х)/2 ⋅ 49 ⋅ 0,01=25х ⋅ 49 ⋅ 0,01=49х ⋅0,25.

Сумма всех выплат после полного погашения составит:

49х+49х ⋅ 0,25 = 1,25 ⋅ 49х = 5/4 ⋅ 49х или 2 млн рублей по условию. Нас интересует значение 49х.

Получаем 49х = 2 ⋅ 4/5 = 1,6 млн рублей. Ответ: 1,6.

ЕГЭ 2022 ФИПИ. Вариант 23. Задача 15.

В июле планируется взять кредит в банке на некоторую сумму. Условия его возврата таковы:

— каждый январь долг возрастает на 15% по сравнению с концом предыдущего года;

— с февраля по июнь каждого года необходимо выплатить часть долга, равную 1,587 млн рублей.

Сколько миллионов рублей было взято в банке, если известно, что долг был полностью погашен двумя равными платежами (т.е. за два года)?

Решение. Пусть в июле в банке будет взято S млн рублей.

1) В январе на эту сумму насчитают 15%, и долг составит 115% от S, т.е.

1,15S млн рублей. В феврале-июне будут выплачены 1,587 млн рублей.

Тогда долг составит 1,15S-1,587 млн рублей.

2) В январе на последнюю сумму насчитают 15% и долг составит 115% от последней суммы,

т.е. (1,15S-1,587) ⋅ 1,15 или 1,3225S-1,587 ⋅ 1,15 млн рублей.

В феврале-июне будут выплачены 1,587 млн рублей.

Тогда долг составит 1,3225S-1,587 ⋅ 1,15-1,587 или

1,3225S-1,587 ⋅ 2,15 или 1,3225S-3,41205 млн рублей. Долг погашен двумя платежами, поэтому верно равенство 1,3225S-3,41205 = 0.

1,3225S = 3,41205  →   S = 3,41205 : 1,3225  →   S = 2,58 млн рублей было взято в банке.

Ответ: 2,58 млн рублей.

Примечание. Можно было применить формулу Sk2  = X(k +1) .

У нас Х = 1,587 млн рублей, k = 1+0,01r = 1 + 0,15 = 1,15.

Тогда S ⋅ 1,152 = 1,587(1,15+1); S ⋅ 1,152 = 1,587 ⋅ 2,15;

S ⋅ 1,3225 = 1,587 ⋅ 2,15; разделим обе части равенства на 1,3225.

S = 1,2 ⋅ 2,15 = 2,58. Итак, в банке было взято 2,58 млн рублей.

ЕГЭ 2022 ФИПИ. Вариант 24. Задача 15.

В июле  года планируется взять кредит в банке на некоторую сумму. Условия его возврата таковы:

— каждый январь долг возрастает на 16% по сравнению с концом предыдущего года;

— с февраля по июнь каждого года необходимо выплатить часть долга, равную 2,523 млн рублей.

Сколько миллионов рублей было взято в банке, если известно, что он был полностью погашен двумя равными платежами (т.е. за два года)?

Решение. Пусть в июле в банке будет взято S млн рублей.

1) В январе на эту сумму насчитают 16%, и долг составит 116% от S, т.е.

1,16S млн рублей. В феврале-июне будут выплачены 2,523 млн рублей.

Тогда долг составит 1,16S-2,523 млн рублей.

2) В январе на последнюю сумму долга насчитают 16% и долг составит 116% от последней суммы,

т.е. (1,16S-2,523) ⋅ 1,16 или 1,3456S-2,523 ⋅ 1,16 млн рублей.

В феврале-июне будут выплачены 2,523 млн рублей.

Тогда долг составит 1,3456S-2,523 ⋅ 1,16-2,523 или

1,3456S-2,523 ⋅ 2,16 или 1,3456S-5,44968  млн рублей. Долг погашен двумя платежами, поэтому верно равенство 1,3456S-5,44968 = 0.

1,3456S = 5,44968  →   S = 5,44968 : 1,3456 →   S = 4,05 млн рублей было взято в банке.

Ответ: 4,05 млн рублей.

Примечание. Можно было применить формулу Sk2  = X(k +1) .

У нас Х = 2,523 млн рублей, k = 1+0,01r = 1 + 0,16 = 1,16.

Тогда S ⋅ 1,162 = 2,523(1,16+1); S ⋅ 1,162 = 2,523 ⋅ 2,16;

S ⋅ 1,3456 = 2,523 ⋅ 2,16; разделим обе части равенства на 1,3456.

S = 1,875 ⋅ 2,16 = 4,05. Итак, в банке было взято 4,05 млн рублей.

ЕГЭ 2022 ФИПИ. Вариант 29. Задача 15.

В июле  года планируется взять кредит в банке на некоторую сумму. Условия его возврата таковы:

— каждый январь долг возрастает на 14% по сравнению с концом предыдущего года;

— с февраля по июнь каждого года необходимо выплатить часть долга, равную 3,249 млн рублей.

Сколько миллионов рублей было взято в банке, если известно, что он был полностью погашен двумя равными платежами (т.е. за два года)?

Решение. Пусть в июле в банке будет взято S млн рублей.

1) В январе на эту сумму насчитают 14%, и долг составит 114% от S, т.е.

1,14S млн рублей. В феврале-июне будут выплачены 3,249 млн рублей.

Тогда долг составит 1,14S-3,249 млн рублей.

2) В январе на последнюю сумму долга насчитают 14% и долг составит 114% от последней суммы, т.е.

(1,14S-3,249) ⋅ 1,14 или 1,2996S-3,249 ⋅ 1,14 млн рублей.

В феврале-июне будут выплачены 3,249 млн рублей.

Тогда долг составит 1,2996S-3,249 ⋅ 1,14-3,249 или

1,2996S-3,249 ⋅ 2,14 или 1,2996S-6,95286  млн рублей. Долг погашен двумя платежами, поэтому верно равенство 1,2996S-6,95286 = 0.

1,2996S = 6,95286  →   S = 6,95286 : 1,2996 →   S = 5,35 млн рублей было взято в банке. Ответ: 5,35 млн рублей.

Примечание. Можно было применить формулу Sk2  = X(k +1) .

У нас Х = 3,249 млн рублей, k = 1+0,01r = 1 + 0,14 = 1,14.

Тогда S ⋅ 1,142 = 3,249(1,14+1); S ⋅ 1,142 = 3,249 ⋅ 2,14;

S ⋅ 1,2996 = 3,249 ⋅ 2,14; разделим обе части равенства на 1,2996.

S = 2,5 ⋅ 2,14 = 5,35. Итак, в банке было взято 5,35 млн рублей.

ЕГЭ 2022 ФИПИ. Вариант 25. Задача 15.

15 декабря планируется взять кредит в банке на сумму 600 тысяч рублей на n+1 месяц. Условия его возврата таковы: — 1-го числа каждого месяца долг возрастает на 3 % по сравнению с концом предыдущего месяца; — со 2-го по 14-е число каждого месяца необходимо выплатить часть долга; — 15-го числа каждого месяца с 1-го по n-й долг должен быть на одну и ту же сумму меньше долга на 15-е число предыдущего месяца; — 15-го числа n-го месяца долг составит 200 тысяч рублей; — к 15-му числу (n + 1)-го месяца кредит должен быть полностью погашен. Найдите n, если известно, что общая сумма выплат после полного погашения кредита составит 852 тысячи рублей.

Решение. Обозначим через Х ежемесячную выплату без процентов в первые n месяцев. Это означает, что сумма долга ежемесячно уменьшается на Х тысяч рублей. За n месяцев будет выплачено 600-200=400 тысяч рублей, т.е. nХ=400.

Подсчитаем проценты за все (n+1) месяцев кредитования. Сумму, взятую в кредит запишем как  nХ+200.

((nX+200)+((n-1)X+200)+((n-2)X+200)+((n-3)X+200)+…+200) ⋅ 0,03.

В скобках у нас сумма арифметической прогрессии. Здесь a1 = nX+200; an = 200. Применим формулу Sn = (a1+an)/2 ⋅ n.

(nX+200+200)/2 ⋅ (n+1) ⋅ 0,03 = (nX+400)(n+1) ⋅ 0,15. Так как nХ=400, то имеем

(400+400)(n+1) ⋅ 0,15 = 800(n+1) ⋅ 0,15 = 120(n+1). Такова сумма процентов за всё время кредитования. Переплата составит 852-600=252 тысячи рублей. Это как раз сумма выплаченных процентов. Получаем равенство:

120(n+1)=252, отсюда n+1=252:120;

n+1=21, тогда n=20. Ответ: 20.

ЕГЭ 2022 ФИПИ. Вариант 26. Задача 15.

15 декабря планируется взять кредит в банке на сумму 1000000 рублей на (n+1) месяцев. Условия его возврата таковы: — 1-го числа каждого месяца долг возрастает на r % по сравнению с концом предыдущего месяца; — со 2-го по 14-е число каждого месяца необходимо выплатить часть долга; — 15-го числа каждого месяца с 1-го по n-й долг должен быть на 40 тысяч рублей меньше долга на 15-е число предыдущего месяца; — 15-го числа n-го месяца долг составит 200 тысяч рублей; — к 15-му числу (n + 1)-го месяца кредит должен быть полностью погашен. Найдите r, если известно, что общая сумма выплат после полного погашения кредита составит 1378 тысячи рублей.

Решение. Обозначим через Х ежемесячную выплату без процентов в первые n месяцев. Это означает, что сумма долга ежемесячно уменьшается на Х тысяч рублей. У нас Х=40 тысяч рублей. За n месяцев будет выплачено 1000-200=800 тысяч рублей, т.е. nХ=800.

Отсюда n=800 : 40 = 20. Кредит собираются взять на 21 месяц.

Подсчитаем проценты за все 21 месяц кредитования. Сумму, взятую в кредит,  запишем как  20Х+200.

((20Х+200)+(19Х+200)+(18Х+200)+…+200) ⋅ 0,01r.

В скобках у нас сумма арифметической прогрессии.

Здесь a1 = 20X+200; an = 200. Применим формулу Sn = (a1+an)/2 ⋅ n.

(20X+200+200)/2 ⋅ 21 ⋅ 0,01r = (10X+200) ⋅21 ⋅ 0,01r. Так как 20Х=800, то имеем

(400+200) ⋅21 ⋅ 0,01r. = 600 ⋅21 ⋅ 0,01r = 126r. Такова сумма процентов за всё время кредитования. Переплата составит 1378-1000=378 тысячи рублей. Это как раз сумма выплаченных процентов. Получаем равенство:

126r = 378, отсюда r = 3%.  Ответ: 3.

вход на сайт тестов онлайн по математике для 10 класса
Тесты по математике

Подготовка к ОГЭ по математике

Наверх