Профиль-математика Задачи по математике решайте как мы, решайте вместе с нами, решайте лучше нас!
RSS
Рубрика "Алгебра 10 класс"

Решить логарифмическое неравенство

Решите неравенство lg4(x2 – 26)4 – 4lg2(x2 – 26)2 ≤ 240.

Применим формулу для логарифма степени и запишем

lg(x2 – 26)4  как  2lg(x2 – 26)2. А почему не как 4lg(x2 – 26)? Потому что в этом случае число под знаком логарифма должно быть положительным, а не просто не равным нулю, как мы записали в ОДЗ. Это значит, что преобразованное далее неравенство не будет равносильно данному. Итак:

lg4(x2 – 26)4 = (lg(x2 – 26)4 )4 = (2lg(x2 – 26)2 )4 = 24 · (lg(x2 – 26)2 )4 = 16lg4(x2 – 26)2.

Тогда данное неравенство примет вид:

16lg4(x2 – 26)2 – 4lg2(x2 – 26)2 ≤ 240. Делим обе части на 4.

4lg4(x2 – 26)2 – lg2(x2 – 26)2 – 60 ≤ 0.

Сделаем замену. Пусть lg2(x2 – 26)2 = t.

Решим неравенство. 4t2 – t – 60 ≤ 0.

Находим корни квадратного трёхчлена.

4t2 – t – 60 = 0. D = b2 – 4ac = 1 + 960 = 961 = 312.

0 ≤  lg2(x2 – 26)2 ≤ 4.

lg2(x2 – 26)2 ≤ 4.  Извлекаем из обеих частей квадратные корни.

| lg(x2 – 26)2| ≤ 2.

-2 ≤ lg(x2 – 26)2 ≤ 2. (см. рис. 2)

Запишем числа -2 и 2 в виде десятичного логарифма.

lg0,01 ≤ lg(x2 – 26)2 ≤ lg100. Логарифмическая функция с основанием 10 является возрастающей, поэтому последнее неравенство равносильно неравенству

0,01 ≤ (x2 – 26)2 ≤ 100. А это неравенство равносильно системе неравенств

Решаем каждое неравенство системы по отдельности, а затем находим их общее решение. Оно и будет служить решением данного неравенства.

I. (x2 – 26)2 ≥ 0,01; (см. рис.3)

| x2 – 26| ≥ 0,1;

1) x2 – 26 ≤ -0,1                 

x2 ≤ 25,9.

2)  x2 – 26 ≥ 0,1

  x2 ≥ 26,1.

Решаем второе неравенство системы ( * )

II. (x2 – 26)2 ≤ 100;

| x2 – 26| ≤ 10;

-10 ≤ x2 – 26 ≤ 10                           

16 ≤ x2 ≤ 36;     

Полученные решения неравенств I и II покажем синим и зелёным цветом на координатной прямой. Пересечение этих промежутков и будет решением нашего неравенства.

Тригонометрические уравнения на ЕГЭ

Пример 1.

а) Решить уравнение cos4x+cos2x=0.

б) Найдите все корни этого уравнения, принадлежащие отрезку [-π; π/3].

Решение.

а) Решаем уравнение cos4x+cos2x=0.

Применим формулу               

Tогда данное уравнение примет вид: 2cos3x⋅cosx=0. Отсюда следует, что либо cos3x=0 либо cosx=0.

  • Если cos3x=0, то 3х=π/2+πn, отсюда х=π/6+πn/3, где nϵZ.
  • Если cosx=0, то х=π/2+πn, где nϵZ.

Заметим, что решения уравнения cosx=0 входят в решения уравнения cos3x=0, поэтому общим решением данного уравнения будут числа x=π/6+πn/3, где nϵZ.

б) Найдём все корни этого уравнения, принадлежащие отрезку [-π; π/3].

Рассмотрим общее решение x=π/6+πn/3, где nϵZ на единичной окружности. Здесь значение πn/3 означает, что нужно брать n раз угол π/3. Отмечаем угол π/6, а затем углы, полученные поворотом угла π/6 на π/3, полученный таким образом угол π/2 опять повернём на π/3, получится угол 5π/6, затем угол 5π/6+ π/3=7π/6, следующий угол

7π/6+ π/3=9π/6=3π/2, и, наконец, 3π/2+ π/3=11π/6. Смотрите рисунок 1.

         

Все отмеченные углы рассмотрим на отрезке [-π; π/3]. Смотрим рисунок 2. Получились числа -5π/6; -π/2; -π/6; π/6.

Ответ: а) π/6+πn/3, где nϵZ; б) -5π/6; -π/2; -π/6; π/6.

Пример 2.

а) Решить уравнение cos4x-sin2x=0.

б) Найдите все корни этого уравнения, принадлежащие отрезку [0; π].

Решение.

а) Применим формулу 1-cos2α=2sin2α; тогда данное уравнение примет вид:

1-2sin22x-sin2x=0; 2sin22x+sin2x-1=0. Сделаем замену: sin2x=t.

Получаем равенство: 2t2+t-1=0.

У нас a-b+c=0, поэтому по методу коэффициентов t1=-1, t2=1/2.

  • При sin2x=-1 получаем 2х=-π/2+2πn, отсюда х=-π/4+πn, где nϵZ.
  • При sin2x=1/2 получаем 2х=π/6+2πn и 2х=5π/6+2πn, где nϵZ.

Тогда х=π/12+πn и х=5π/12+πn, где nϵZ.

Рассмотрим решения 2х=-π/2+2πn, 2х=π/6+2πn и 2х=5π/6+2πn на единичной окружности. Возьмём значения 2х при n=0. Углы -π/2, π/6 и 5π/6 отличаются друг от друга на значение 2π/3. Тогда общим решением будут являться числа

2х=π/6+(2π/3)n, отсюда общим решением данного уравнения будут

значения  х=π/12+(π/3)n, где nϵZ.

б) Найдём все корни этого уравнения, принадлежащие отрезку [0; π]. Для этого в общее решение х=π/12+(π/3)n, где nϵZ будем подставлять такие целые значения nϵZ,

чтобы хϵ[0; π].

Возьмём n=0, тогда х=π/12 ϵ[0; π].

При n=1 получим х= π/12+π/3= π/12+4π/12=5π/12 ϵ[0; π].

При n=2 получим х= π/12+2π/3= π/12+8π/12=9π/12=3π/4 ϵ[0; π].

При n=3 получим х= π/12+π, и это значение не входит в заданный отрезок [0; π].

Ответ: а) π/12+(π/3)n, где nϵZ; б) π/12, 5π/12, 3π/4.

Пример 3.

а) Решить уравнение

б) Найдите все корни этого уравнения, принадлежащие отрезку [π; 3π/2].

Решение.

а) Применим формулу cos(α-β)=cosα∙cosβ+sinα∙sinβ; тогда данное уравнение примет вид:

cos3x=cos23x; cos23x-cos3x=0;  cos3x(cos3x-1)=0;

cos3x=0 или cos3x-1=0.

  • Если cos3x=0, то 3х=π/2+πn, тогда х= π/6+(π/3)n, где nϵZ.
  • Если cos3x-1=0, то cos3x=1, тогда 3х=2πm, тогда х=(2π/3)m, где mϵZ.

Общие решения данного уравнения: х=π/6+(π/3)n, где nϵZ и х=(2π/3)m, где mϵZ.

б) Найдём все корни этого уравнения, принадлежащие отрезку [π; 3π/2].

Мы получили значения 3х=π/2+πn и 3х=2πm. Отметим их на единичной окружности, сделав замену 3х=t. Смотрите рисунок 3.

     

Необходимо выполнение условие хϵ[π; 3π/2]. Отсюда следует, что 3хϵ[3π; 9π/2].

Все отмеченные углы рассмотрим на отрезке [3π; 9π/2]. Смотрим рисунок 4. Получились числа 7π/2; 4π; 9π/2. Так как это значения 3х, то делим каждое из них на 3. Получим: 7π/6; 4π/3; 3π/2.

Ответ: а) π/6+(π/3)n, где nϵZ; (2π/3)m, где mϵZ.

б) 7π/6; 4π/3; 3π/2.

Наверх