Профиль-математика Задачи по математике решайте как мы, решайте вместе с нами, решайте лучше нас!
RSS

Каждый из группы учащихся сходил в кино или в театр

Задача. Каждый из группы учащихся сходил в кино или в театр, при этом возможно, что кто-то из них мог сходить и в кино, и в театр. Известно, что в театре мальчиков было не более 3/10 от общего числа учащихся группы, посетивших театр, а в кино мальчиков было не более 5/12 от общего числа учащихся группы, посетивших кино.

а) Могло ли быть в группе 8 мальчиков, если дополнительно известно, что всего в группе было 16 учащихся?

б) Какое наибольшее количество мальчиков могло быть в группе, если дополнительно известно, что всего в группе было 16 учащихся?

в) Какую наименьшую долю могли составлять девочки от общего числа учащихся в группе без дополнительного условия пунктов а и б?

Решение.

а) Дробь 3/10 – несократимая. Заметим, что не могла быть первоначальной дробь 6/20 , т.к. в группе всего 16 учащихся.

Вывод: в театр сходили 3 мальчика и 10-3=7 девочек.

м   м   м       д   д   д   д   д   д     д

Аналогично, рассматривая дробь 5/12 , заключаем, что в кино сходили 5 мальчиков и 12-5=7 девочек.

м   м   м   м   м      д   д   д   д   д   д     д

Если предположить, что в группе 8 мальчиков, то, поскольку всего 16 человек, девочек тоже 8. А это означает, что в театр ходили 6+1 девочка, в кино ходили те же 6 плюс одна другая девочка. Все сходится: в группе 16 человек: 8 мальчиков и 8 девочек. Ответ: да.

б) 8 мальчиков. Это вытекает из рассуждений в пункте а) и из условия: каждый из группы учащихся сходил в кино или в театр, при этом возможно, что кто-то из них мог сходить и в кино, и в театр.

в) Также из пункта а) следует, что наименьшее число девочек в группе равно 7, т.е. все эти семь девочек ходили и в кино и в театр. А так как мальчиков 8, то общее количество детей равно 7+8=15. Следовательно, доля девочек от общего количества учащихся составляет 7/15 .

Ответ: а) да; б) 8; в) 7/15.

 

Оставить свой комментарий

Наверх