Профиль-математика Задачи по математике решайте как мы, решайте вместе с нами, решайте лучше нас! НАШЕ МЕНЮ НИЖЕ ВАМ В ПОМОЩЬ.
RSS

15-го декабря планируется взять кредит в банке на 11 месяцев. Условия возврата таковы: 1-го числа каждого месяца долг возрастает на 3%

Задача. 15-го декабря планируется взять кредит в банке на 11 месяцев. Условия возврата таковы:

— 1-го числа каждого месяца долг возрастает на 3% по сравнению с концом предыдущего месяца;

— со 2-го по 14-е число каждого месяца необходимо выплатить часть долга;

— 15-го числа каждого месяца с 1-го по 10-й долг должен быть на 80 тысяч рублей меньше долга на 15-е число предыдущего месяца;

— к 15-му числу 11-го месяца кредит должен быть полностью погашен.

Какой долг будет 15-го числа 10-го месяца, если общая сумма выплат после полного погашения кредита составит 1198 тысяч рублей?

Решение. Для удобства обозначим через х величину, на которую ежемесячно уменьшался долг первые 10 месяцев (х = 80 тыс. рублей), а через у – остаток долга на 11 месяц кредитования (долг 15 числа 10-го месяца). Тогда, очевидно, что кредит был равен (10х + у) тысяч рублей.

Подсчитаем проценты за первые 10 месяцев.

0,03 ∙ ( (10х+у) + (9х+у) + (8х+у) + … + (х+у)) =

= 0,03 ∙ (10х + 9х + 8х +…+ х) + 0,03 ∙ 10у =

= 0,03 ∙ 55х + 0,3у = 1,65х + 0,3у.

За 11-й месяц будет выплачено (у + 0,03у) тыс. рублей.

Итак, за всё время кредитования клиент заплатил

10х + 1,65х + 0,3у + у + 0,03у или 1198 тыс. рублей.

10х – это 80 ∙ 10 = 800 тысяч рублей.

800 + 1,65х + 1,33у = 1198;

1,65 ∙ 80 + 1,33у = 1198-800;

132 + 1,33у = 398;

1,33у = 398-132;

1,33у = 266;

у = 200.

Ответ: 200 тысяч рублей.

Комментирование закрыто.

вход на сайт тестов онлайн по математике для 10 класса
Тесты по математике

Подготовка к ОГЭ по математике

Наверх