Задания на векторы в 1 части профильного ЕГЭ по математике
Задача. Даны векторы \( \vec{a}\ \)(2; 3) и \( \vec{b}\ \)(-3; b0). Найдите b0, если |\( \vec{b}\ \)| = 1,5|\( \vec{a}\ \)|. Если таких значений несколько, в ответ запишите меньшее из них.
Решение.
Модуль вектора \( \vec{a}\ \)(а1; а2) равен квадратному корню из суммы квадратов его координат:
\( | \vec{a}|=\sqrt{(a_1)^2+(a_2)^2}\ \);
\( | \vec{a}|=\sqrt{2^2+3^2}\ \); \( | \vec{a}|=\sqrt{13}\ \).
Найдём модуль вектора \( \vec{b}\ \)(-3; b0).
\( | \vec{b}|=\sqrt{(-3)^2+(b_0)^2}\ \);
\( | \vec{b}|=\sqrt{9+(b_0)^2}\ \).
По условию |\( \vec{b}\ \)| = 1,5|\( \vec{a}\ \)|. Возведём обе части равенства в квадрат.
Получаем b2 = 2,25a2.
9 + (b0)2 = 2,25 ∙ 13;
9 + (b0)2 = 29,25;
(b0)2 = 20,25;
b0 = ±4,5.
В ответе требуется записать меньшее из значений b0.
Ответ: -4,5.
Задача. Даны векторы \( \vec{a}\ \)(4; -1) и \( \vec{b}\ \)(b0; 8). Найдите b0, если |\( \vec{b}\ \)| = 2,5|\( \vec{a}\ \)|. Если таких значений несколько, в ответ запишите большее из них.
Решение.
Найдём модуль вектора \( \vec{a}\ \)(4; -1).
\( | \vec{a}|=\sqrt{4^2+(-1)^2}\ \);
\( | \vec{a}|=\sqrt{17}\ \).
Найдём модуль вектора \( \vec{b}\ \)(b0; 8).
\( | \vec{b}|=\sqrt{(b_0)^2+8^2}\ \);
\( | \vec{b}|=\sqrt{(b_0)^2+64}\ \);
По условию |\( \vec{b}\ \)| = 2,5|\( \vec{a}\ \)|. Возведём обе части равенства в квадрат.
Получаем b2 = 6,25a2.
(b0)2 + 64 = 6,25 ∙ 17;
(b0)2 + 64 = 106,25;
(b0)2 = 42,25;
b0 = ±6,5.
В ответе требуется записать большее из значений b0.
Ответ: 6,5.
Задача. Даны векторы \( \vec{a}(-1; 3)\ \), \( \vec{b}(4; 1)\ \), \( \vec{c}(2; c_0)\ \). Найдите с0, если \( ( \vec{a}+\vec{b})\: \cdot \: \vec{c} =0\ \).
Решение.
Скалярное произведение векторов равно сумме произведение соответственных координат этих векторов.
3 ∙ 2 + 4 ∙ с0 = 0;
с0 = -6 : 4;
с0 = -1,5.
Ответ: -1,5.
Задача. Даны векторы \( \vec{a}(3; -1)\ \), \( \vec{b}(2; 0)\ \), \( \vec{c}(4; c_0)\ \). Найдите с0, если \( ( \vec{a}- \vec{b})\: \cdot \: \vec{c} =0\ \).
Решение аналогично решению предыдущей задачи.
1 ∙ 4 + (-1) ∙ с0 = 0;
-с0 = -4;
с0 = 4.
Ответ: 4.
Задача. Даны векторы \( \vec{a}(-2; 4)\ \)и \( \vec{b}(2; -1)\ \). Известно, что векторы \( \vec{c}(x_c; y_c)\ \)и \( \vec{b}\ \) сонаправленные, а \( | \vec{c}|=| \vec{a}|\ \). Найдите хс+ус.
Решение.
Так как длина вектора \( \vec{c}(x_c; y_c)\ \)вдвое больше длины вектора \( \vec{b}\ \), а векторы \( \vec{c}(x_c; y_c)\ \)и \( \vec{b}\ \) сонаправлены, то и координаты вектора \( \vec{c}(x_c; y_c)\ \) больше координат вектора \( \vec{b}\ \) в два раза.
Получаем хс = 2 ∙ 2 = 4 и ус = -1 ∙ 2 = -2.
Тогда хс + ус = 4 + (-2) = 2.
Ответ: 2.
Задача. Даны векторы \( \vec{a}(4; -6)\ \)и \( \vec{b}(-2; 3)\ \). Известно, что \( | \vec{c}|=| \vec{a}|\ \), а векторы \( \vec{c}(x_c; y_c)\ \)и \( \vec{b}\ \) противоположно направленные. Найдите хс+ус.
Решение аналогично решению предыдущей задачи.
Длина вектора \( \vec{c}(x_c; y_c)\ \)вдвое больше длины вектора \( \vec{b}\ \), а векторы \( \vec{c}(x_c; y_c)\ \)и \( \vec{b}\ \), по условию, противоположно направлены, следовательно отношение координат вектора \( \vec{c}(x_c; y_c)\ \) к соответственным координатам вектора \( \vec{b}\ \) равно (-2).
Получаем хс = -2 ∙ (-2) = 4 и ус = -2 ∙ 3 = -6.
Тогда хс + ус = 4 + (-6) = -2.
Ответ: -2.
Каждую из двух предыдущих задач можно решить быстро и легко графическим способом.
Смотрите видео.
Задача. На координатной плоскости (рис.1) изображены векторы \( \vec{a}\ \)и \( \vec{b}\ \). Найдите координаты вектора \( \vec{c}\ \), если \( \vec{c}=0,5 \vec{b}- \vec{a}\ \). В ответ запишите сумму координат вектора \( \vec{c}\ \).
Решение.
Определим координаты данных векторов.
Каждая координата вектора равна разности соответствующих координат его конца и начала.
Смотрим рис. 2.
А1(1; 2) и А2(-5; 6); В1(5; -4) и В2(2; 4). Тогда
Каждая координата произведения вектора на число равна произведению соответствующей координаты вектора на это число.
Каждая координата разности двух векторов равна разности соответствующих координат этих векторов.
По условию \( \vec{c}=0,5 \vec{b}- \vec{a}\ \). Следовательно,
Таким образом, сумма координат вектора \( \vec{c}\ \) равна 4,5.
Ответ: 4,5.
Задача. На координатной плоскости (рис.3) изображены векторы \( \vec{a}\ \)и \( \vec{b}\ \). Найдите координаты вектора \( \vec{c}(x_c; y_c)\ \), если \( \vec{c}=\vec{a}-1,5 \vec{b}\ \).
В ответ запишите произведение хс ∙ ус.
Решение аналогично решению предыдущей задачи.
Определим координаты данных векторов.
Смотрим рис. 4.
А1(-7; -1) и А2(5; 5); В1(2; -4) и В2(-6; 3). Тогда
По условию \( \vec{c}=\vec{a}-1,5 \vec{b}\ \). Следовательно,
Таким образом, искомое произведение координат вектора \( \vec{c}\ \)
хс ∙ ус = 24 ∙ (- 4,5) = -108.
Ответ: -108.
Задача. Даны векторы \( \vec{a}(4; y_a)\ \)и \( \vec{b}(x_b; 0)\ \), косинус угла между которыми равен \( \frac{2}{\sqrt{5}}\ \). Найдите уа. Если таких значений несколько, в ответ запишите большее из них.
Решение.
Скалярное произведение двух векторов равно произведению модулей этих векторов на косинус угла φ между ними.
В прямоугольной системе координат скалярное произведение векторов
\( \vec{a}(x_1; y_1)\ \)и \( \vec{b}(x_2; y_2)\ \) выражается формулой
\( \vec{a} \cdot \vec{b} =x_1x_2+y_1y_2\ \)
Получаем равенство:
Возведём обе части равенства в квадрат:
20 ∙ (xb)2 = (16 + (ya)2) ∙ (xb)2; делим на (xb)2 обе части равенства:
20 = 16 + (уа)2;
(уа)2 = 4;
уа = ±2.
Большее из этих значений уа = 2.
Ответ: 2.
Задача. Даны векторы \( \vec{a}(x_a; -2)\ \)и \( \vec{b}(0; y_b)\ \), косинус угла между которыми равен \( -\sqrt{0,2}\ \). Найдите xа. Если таких значений несколько, в ответ запишите меньшее из них.
Решение аналогично решению предыдущей задачи.
Составим равенство на основании формулы:
Разделим обе части равенства на (-0,2).
Возведём обе части равенства в квадрат:
20 ∙ (уb)2 = ((хa)2 + 4) ∙ (уb)2; делим на (уb)2 обе части равенства:
20 = (ха)2 + 4;
(ха)2 = 16;
ха = ±4.
Меньшее из этих значений ха = -4.
Ответ: -4.
Задача. Даны векторы \( \vec{a}(14; -2)\ \)и \( \vec{b}(-7; -1)\ \). Найдите cosα, где α – угол между векторами \( \vec{a}\ \)и \( \vec{b}\ \).
Решение.
Найдём модули данных векторов.
Получаем:
14 ∙ (-7) + (-2) ∙ (-1) = 10 ∙ 5 ∙ cosα;
-98 + 2 = 100 ∙ cosα, отсюда cosα = -0,96.
Ответ: -0,96.
Задача. Даны векторы \( \vec{a}(-6; 2)\ \)и \( \vec{b}(9; 13)\ \). Найдите косинус угла между
векторами \( \vec{a}\ \)и \( \vec{b}\ \).
Решение аналогично решению предыдущей задачи.
Находим модули данных векторов.
Получаем:
-6 ∙ 9 + 2 ∙ 13 = 2 ∙ 5 ∙ cosα;
-54 + 26 = 100 ∙ cosα;
-54 + 26 = 100 ∙ cosα;
-28 = 100 ∙ cosα;
отсюда cosα = -0,28.
Ответ: -0,28.
Как найти скалярное произведение векторов
Задача. На координатной плоскости (рис.1) изображены векторы \( \vec{a}\ \)и \( \vec{b}\ \). Найдите скалярное произведение векторов \( \vec{a}\ \)и \( 2\vec{b}\ \).
Решение.
Скалярным произведением векторов
\( \vec{a}\ \){a1; a2} и \( \vec{b}\ \){b1; b2}
называется число a1b1 + a2b2.
Произведением вектора \( \vec{a}\ \){a1; a2} на число λ называется вектор \( λ\vec{a}\ \){λa1; λa2}.
Пусть вектор \( \vec{a}\ \)имеет началом точку
А1(х1; у1), а концом – точку А2(х2; у2).
Координатами вектора \( \vec{a}\ \) будем называть числа а1 = х2 -х1, а2 = у2 -у1.
У нас (см. рис.2) А1(-2; 5), А2(-6; -4).
Тогда \( \vec{a}(-4; -9)\ \).
Так как В1(6; 2), В2(1; -2), то \( \vec{b}\ \){-5; -4}.
Следовательно, \( 2\vec{b}(-10; -8)\ \).
Итак, искомое скалярное произведение
\( \vec{a}\ \)и \( 2\vec{b}\ \):
\( \vec{a}\ \)∙ \( 2\vec{b}\ \)= -4 ∙ (-10) + (-9) ∙ (-8) = 40 + 72 = 112.
Ответ: 112.
Задача. На координатной плоскости (рис.3) изображены векторы \( \vec{a}\ \)и \( \vec{b}\ \). Найдите скалярное произведение векторов \( 2\vec{a}\ \)и \( \vec{b}\ \).
Решение.
У нас (см. рис.4) А1(-6; 4), А2(-2; -2).
Тогда \( \vec{a}\ \){4; -6} и \( 2\vec{a}\ \){8; -12}.
Начало и конец вектора \( \vec{b}\ \) – точки В1(-1; -4) и В2(2; 3),
следовательно, \( \vec{b}\ \){3; 7}.
Итак, искомое скалярное произведение
\( 2\vec{a}\ \)и \( \vec{b}\ \):
\( 2\vec{a}\ \)∙ \( \vec{b}\ \)= 8 ∙ 3 + (-12) ∙ 7 = 24 -84 = -60.
Ответ: -60.
Задача. Даны векторы \( \vec{a}\ \)(2; -5) и \( \vec{b}\ \)(5; 7). Найдите скалярное произведение векторов \( 0,6\vec{a}\ \)и \(1,4\vec{b}\ \).
Решение.
\( 0,6\vec{a}\ \)(0,6 ∙ 2; 0,6 ∙ (-5)); \( 0,6\vec{a}\ \)(1,2; -3).
\( 1,4\vec{b}\ \)(1,4 ∙ 5; 1,4 ∙ 7); \( 1,4\vec{b}\ \)(7; 9,8).
Скалярное произведение этих векторов
\( 0,6\vec{a}\ \)∙ \(1,4\vec{b}\ \) = 1,2 ∙ 7 + (-3) ∙ 9,8 = 8,4 -29,4 = -21.
Ответ: -21.
Задача. Даны векторы \( \vec{a}\ \)(2,2; -4) и
\( \vec{b}\ \)(-1,25; -1). Найдите скалярное произведение векторов \( 3\vec{a}\ \)и \(4\vec{b}\ \).
Решение.
Искомое скалярное произведение векторов
\( 3\vec{a}\ \)∙ \(4\vec{b}\ \) = 12\( \vec{a}\ \)∙ \( \vec{b}\ \) = 12(2,2 ∙ (-1,25) + (-4) ∙ (-1)) =
= 12(-2,75 + 4) = 12 ∙ 1,25 = 15.
Ответ: 15.
Задача. На координатной плоскости (рис.5) изображены векторы \( \vec{a}\ \), \( \vec{b}\ \)и \( \vec{c}\ \). Найдите скалярное произведение \( \vec{a}\ \)∙ \( (\vec{b}+\vec{c})\ \).
Решение.
Мы знаем, что скалярное произведение двух векторов равно сумме произведений соответственных координат этих координат.
Сумму векторов \( \vec{b}\ \) и \( \vec{c}\ \) заменим вектором \( \vec{d}\ \).
Найдём координаты векторов \( \vec{a}\ \)и \( \vec{d}\ \).
Смотрим рис. 6.
А1(-1; -2) и А2(-7; 3). Тогда \( \vec{a}\ \){-6; 5}.
B1(5; -4) и B2(5; 1). Тогда \( \vec{b}\ \){0; 5}.
C1(1; 4) и C2(-6; -1). Тогда \( \vec{c}\ \){-7; -5}.
При сложении двух векторов, складываются соответственные координаты этих векторов.
Так как \( \vec{d}\ \)= \( \vec{b}\ \)+\( \vec{c}\ \), то \( \vec{d}\ \){-7; 0}. Тогда искомое скалярное произведение:
\( \vec{a}\ \)∙ \( ( \vec{b}+\vec{c})\ \)= \( \vec{a}\ \)∙ \( \vec{d}\ \) = -6 ∙ (-7) + 5 ∙ 0 = 42.
Ответ: 42.
Задача. На координатной плоскости (рис.7) изображены векторы \( \vec{a}\ \), \( \vec{b}\ \)и \( \vec{c}\ \). Найдите скалярное произведение \( \vec{a}\ \)∙ \( (3 \vec{a}- 2 \vec{b})\ \).
Решение.
Применим распределительный закон умножения векторов.
\( \vec{a}\ \)∙ \( (3 \vec{b}- 2 \vec{c})\ \)= \( 3\vec{a}\ \) ∙ \( \vec{b}\ \)- \( 2\vec{a}\ \) ∙ \( \vec{c}\ \).
Найдём скалярные произведения векторов: \( \vec{a}\ \)и \( \vec{b}\ \); \( \vec{a}\ \)и \( \vec{c}\ \).
Определим координаты всех трёх векторов.
Смотрим рисунок 8.
А1(-2; -1) и А2(-7; 3). Тогда \( \vec{a}\ \){-5; 4}.
B1(3; -1) и B2(6; 4). Тогда \( \vec{b}\ \){3; 5}.
C1(2; 5) и C2(-2; 2). Тогда \( \vec{c}\ \){-4; -3}.
Тогда
\( \vec{a}\ \)∙ \( \vec{b}\ \)= -5 ∙ 3 + 4 ∙ 5 = -15 + 20 = 5;
\( \vec{a}\ \)∙ \( \vec{c}\ \)= -5 ∙ (-4) + 4 ∙ (-3) = 20 -12 = 8.
Искомое скалярное произведение векторов
\( \vec{a}\ \)∙ \( (3 \vec{b}- 2 \vec{c})\ \)= \( 3\vec{a}\ \) ∙ \( \vec{b}\ \)- \( 2\vec{a}\ \) ∙ \( \vec{c}\ \)= 3 ∙ 5 -2 ∙ 8 = 15 -16 = -1.
Ответ: -1.
Задача. Вычислите скалярное произведение векторов \( \vec{a}\ \) и \( \vec{b}\ \),
если |\( \vec{a}\ \)| = 3, |\( \vec{b}\ \)| = 4, а угол между ними равен 60°.
Решение.
Скалярным произведением двух векторов называется произведение их длин на косинус угла между ними.
\( \vec{a}\ \) ∙ \( \vec{b}\ \)= |\( \vec{a}\ \)| ∙ |\( \vec{b}\ \)| ∙ cosφ,
где φ – угол между векторами \( \vec{a}\ \) и \( \vec{a}\ \).
Получаем
\( \vec{a}\ \) ∙ \( \vec{b}\ \)= 3 ∙ 4 ∙ cos60° = 12 ∙ 0,5 = 6.
Ответ: 6.
Задача. Вычислите скалярное произведение векторов
\( \vec{p}\ \) = \( \vec{a}\ \)- \( \vec{b}\ \)- \( \vec{c}\ \) и \( \vec{q}\ \) = \( \vec{a}\ \)- \( \vec{b}\ \)+\( \vec{c}\ \),
если |\( \vec{a}\ \)| = 5, |\( \vec{b}\ \)| = 2, |\( \vec{c}\ \)| = 4 и \( \vec{a} \perp \vec{b}\ \).
Решение.
\( \vec{p}\ \) ∙ \( \vec{q}\ \)= (\( \vec{a}\ \)- \( \vec{b}\ \)-\( \vec{c}\ \)) ∙ (\( \vec{a}\ \)- \( \vec{b}\ \)+\( \vec{c}\ \))=
= \( \vec{a}\ \)2-\( \vec{a}\ \)∙ \( \vec{b}\ \)-\( \vec{a}\ \)∙ \( \vec{c}\ \)-\( \vec{a}\ \) ∙ \( \vec{b}\ \)+\( \vec{b}\ \)2+\( \vec{b}\ \) ∙ \( \vec{c}\ \)+\( \vec{a}\ \) ∙ \( \vec{c}\ \)-\( \vec{b}\ \) ∙ \( \vec{c}\ \)-\( \vec{c}\ \)2 =
= |\( \vec{a}\ \)|2+|\( \vec{b}\ \)|2-|\( \vec{c}\ \)|2-\(2 \vec{a}\ \)∙ \( \vec{b}\ \)= 52 + 22 -42 -0 =
= 25 + 4 -16 = 13.
Скалярное произведение двух взаимно перпендикулярных векторов равно нулю.
Так как у нас по условию \( \vec{a} \perp \vec{b}\ \), то \( \vec{a}\ \) ∙ \( \vec{b}\ \)= 0.
Ответ: 13.
Задача. Вычислите скалярное произведение векторов \( \vec{a}\ \)и \( \vec{b}\ \),
если \( \vec{a}\ \)= 3\( \vec{p}\ \) -2\( \vec{q}\ \) и \( \vec{b}\ \)= \( \vec{p}\ \)+ 4\( \vec{q}\ \), где \( \vec{p}\ \)и \( \vec{q}\ \) – единичные взаимно перпендикулярные векторы.
Решение.
\( \vec{a}\ \)∙ \( \vec{b}\ \)= (3\( \vec{p}\ \) -2\( \vec{q}\ \))(\( \vec{p}\ \)+ 4\( \vec{q}\ \)) = 3\( \vec{p}\ \)2 -2\( \vec{p}\ \)∙ \( \vec{q}\ \)+ 12\( \vec{p}\ \)∙ \( \vec{q}\ \) -8\( \vec{q}\ \)2 =
= 3|\( \vec{p}\ \)|2 +10\( \vec{p}\ \)∙ \( \vec{q}\ \) -8|\( \vec{q}\ \)|2 = 3 ∙ 1 + 10 · 0 -8 ∙ 1 = -5.
Ответ: -5.
Задача. Даны точки А(1; 3; 0), B(2; 3; -1),
C(1; 2; -1). Найдите скалярное произведение
векторов \( \vec{AB}\ \) и \( \vec{AC}\ \).
Решение.
Так как скалярное произведение векторов равно сумме произведений соответственных координат этих векторов, то найдём эти координаты.
\( \vec{AB}\ \){2-1; 3-3; -1-0} → \( \vec{AB}\ \){1; 0; -1};
\( \vec{AC}\ \){1-1; 2-3; -1-0} → \( \vec{AC}\ \){0; -1; -1}.
\( \vec{AB}\ \) ∙ \( \vec{AC}\ \) = 1 ∙ 0 + 0 ∙ (-1) + (-1) ∙ (-1) = 1.
Ответ: 1.
На координатной плоскости изображены векторы а, b и с
Задача. На координатной плоскости изображены векторы
Решение.
Пусть А1(-7; 6) и А2(-3; 3) – начало и конец
Пусть В1(2; 1) и В2(2; 5) – начало и конец
Пусть C1(4; -4) и C2(-4; -2) – начало и конец
Ответ: 5.
Эту задачу на сложение данных векторов можно решить графически, используя правило многоугольника. Из законов сложения векторов следует, что сумма нескольких векторов не зависит от того, в каком порядке они складываются.
Длина (модуль) этого вектора равна 5. Это гипотенуза прямоугольного треугольника с катетами 3 и 4.
Ответ: 5.
Смотрим видео.
Задача. На координатной плоскости изображены векторы
Смотрим видео.