Найдите все значения а, при каждом из которых система уравнений имеет более 2-х решений
Задача. Найдите все значения а, при каждом из которых система уравнений имеет более двух решений. ![]()
Решение. Рассмотрим первое уравнение системы.
Раскроем модульные скобки.
Определим знак каждого подмодульного выражения. Для этого воспользуемся методом интервалов.
а) x2-2х=х(х-2). x2-2х≥0 на промежутках (-∞; 0]U[2; +∞);
x2-2х<0 на промежутке (0; 2).
б) у2-2у≥0 на промежутках (-∞; 0]U[2; +∞); у2-2у<0 на промежутке (0; 2).
В зависимости от знака подмодульного выражения мы можем получить 4 разных уравнения.
1) Если x2-2х≥0 и у2-2у≥0, т.е. если
х∈(-∞; 0]U[2; +∞) и у∈(-∞; 0]U[2; +∞), то после раскрытия модульных скобок мы получаем равенство:
х2+х2-2х=у2+у2-2у → 2х2-2х=2у2-2у → х2-х=у2-у → (х2-у2)-(х-у)=0;
(х-у)(х+у)-(х-у)=0 → (х-у)(х+у-1)=0.
Отсюда следует, что либо х-у=0, либо х+у-1=0, поэтому графиком этого уравнения будут служить точки, лежащие на прямых у=х и у= -х+1. Построим эти прямые на участках координатной плоскости для
х∈(-∞; 0]U[2; +∞) и у∈(-∞; 0]U[2; +∞). Линии изобразим зеленым цветом. Смотрите координатную плоскость.

2) Если x2-2х<0 и у2-2у<0, т.е. если х∈(0; 2) и у∈(0; 2), то выражения в модульных скобках перепишем с противоположными знаками и получим:
х2-х2+2х=у2-у2+2у → у=х. График – прямая, которая является биссектрисой I и III-го координатных углов. Изобразим коричневым цветом только отрезок этой прямой при
х (0; 2) и у (0; 2).
3) Если x2-2х≥0 и у2-2у<0, т.е. если х∈(-∞; 0]U[2; +∞) и у∈(0; 2), то получаем уравнение
х2+х2-2х= у2-у2+2у → 2у=2х2-2х → у=х2-х. Это квадратичная функция. Графиком служит парабола, пересекающая ось Ох в
точках (0; 0) и (2; 0), ветви параболы направлены вверх.
Вершина параболы O’(m; n), где m= -b : (2a) = 1 : 2 = 0,5;
n=у(m) = у(0,5)=0,52-0,5=0,25-0,5=-0,25. Синим цветом начертим часть этой параболы, точки которой удовлетворяют условиям:
х∈(-∞; 0]U[2; +∞) и у∈(0; 2).


4) Если x2-2х<0 и у2-2у≥0, т.е.
если х∈(0; 2) и у∈(-∞; 0]U[2; +∞), то после раскрытия модульных скобок мы получаем равенство:
х2-х2+2х=у2+у2-2у → 2х=2у2-2у → х=у2-у. Это квадратичная функция зависимости х от у. Эта парабола пересекает ось Оу в
точках (0; 0) и (0; 2). Вершина параболы
O”(m; n), m= -b : (2a) = 1 : 2 = 0,5;
n=x(m) = x(0,5)=0,52-0,5=0,25-0,5=-0,25. Так как функция у нас зависит от переменной у, то координаты вершины параболы х= -0,25, у=0,5.
Чертим красным цветом ту часть параболы, точки которой удовлетворяют условиям:
х∈(0; 2) и у∈(-∞; 0]U[2; +∞).
Данная система уравнений должна иметь более двух решений, поэтому необходимо, чтобы прямая х + у = а пересекала построенный нами график более чем в двух точках. Запишем это уравнение в виде у = -х +а. График функции у = -х есть биссектриса II и IV-го координатных углов и имеет одну общую точку с графиком первого уравнения. Если этот график сдвинуть на один единичный отрезок вверх, то прямая у = -х +1 будет иметь множество общих точек с графиком первого уравнения (смотрите 1 пункт решения нашего задания), следовательно система будет иметь множество решений.
Вывод: при значениях 0< а ≤ 1 прямая у = -х + а будет иметь с графиком первого уравнения более двух общих точек. Ответ: 0< а ≤ 1.
Найдите все значения а, при каждом из которых система уравнений имеет более двух решений
Задача. Найдите все значения а, при каждом из которых система уравнений имеет более двух решений
![]()
Решение. Так как правая часть равенства неотрицательна, то неотрицательной будет и левая часть неравенства.
Следовательно, x2-8x + y2 + 4y + 15 ≥ 0.
Выделим из алгебраических сумм (x2-8x) и (y2 + 4y) полные квадраты двучленов.
x2-2 ∙ х ∙ 4 + 42-42 + y2 + 2 ∙ y ∙ 2 + 22-22 + 15 ≥ 0;
(x2-2 ∙ х ∙ 4 + 42) + (y2 + 2 ∙ y ∙ 2 + 22) + 15 ≥ 16 + 4-15;
(х-4)2 + (у + 2)2 ≥ 5.
ОДЗ: решения системы находятся среди множества точек, лежащих вне окружности с центром в точке Q(4; -2) и радиусом R =√5 . Смотрите рисунок. Эта окружность изображена зелёным цветом
1) Раскроем модульные скобки в первом уравнении системы, считая подмодульное выражение отрицательным,
т.е. при 2х-у-10 < 0.
Запишем это неравенство в виде: у > 2x -10. Получаем:
x2-8x + y2 + 4y + 15 = 4 ∙ (-2х + у + 10);
x2-8x + y2 + 4y + 15 = -8х + 4у + 40;
x2 + y2 = 25. Графически это уравнение изображает окружность с центром в начале координат и радиусом R = 5.
Решением первого уравнения при условии у > 2x -10 является множество точек
окружности x2 + y2 = 25, лежащих выше прямой у = 2x-10 и находящихся вне окружности (х-4)2 + (у + 2)2 = 5. Эти точки изображены синим цветом.
2) Раскроем модульные скобки в первом уравнении системы, считая подмодульное выражение неотрицательным, т.е. при 2х-у-10 ≥ 0.
Запишем это неравенство в виде: у ≤ 2x -10. Получаем:
x2-8x + y2 + 4y + 15 = 4 ∙ (2х-у-10);
x2-8x + y2 + 4y + 15 = 8х-4у-40;
x2-16х + y2 + 8у = -55. Преобразуем это уравнение к виду:
x2-2 ∙ х ∙ 8 + 82-82 + y2 + 2 ∙ y ∙ 4 + 42-42 = -55;
(x2-2 ∙ х ∙ 8 + 82)-82 + (y2 + 2 ∙ y ∙ 4 + 42)-42 = -55 + 64 + 16;
(х-8)2 + (у + 4)2 = 25.
Графически это уравнение изображает окружность с центром
в точке (8; -4) и радиусом R = 5. Нам подойдут те точки этой окружности, которые лежат ниже прямой у = 2х-10 и находящиеся вне окружности (х-4)2 + (у + 2)2 = 5. Изображаем эти точки красным цветом.

3) Второе уравнение данной системы уравнений х + 2у = а запишем в виде:

занимала промежуточное положение между касательными к зелёной окружности и касательными к синей и красной окружностям, при этом последние касательные не подойдут, так как только в двух точках будут пересекать окружности. Числовое значение параметра а мы найдём, решив системы уравнений:

Будем решать каждую систему уравнений методом подстановки: значение у из первого уравнения подставляем во второе уравнение и получаем квадратное уравнение относительно переменной х. Далее потребуем, чтобы дискриминант квадратного уравнения был равен нулю. В этом случае квадратное уравнение, а значит и каждая система (1-3) будет иметь единственное решение, зависящее от значения а,

4x2-32x + 64 + x2 + a2 + 16-8x + 8a-2ax-20 = 0;
5x2-40x-2ax + 60 + a2 + 8a = 0;
5x2-2(20 + a)x + a2 + 8a + 60 = 0. Находим дискриминант по формуле для чётного второго коэффициента.
D1 = (20 + a)2-5(a2 + 8a + 60) = 400 + 40a + a2-5a2-40a-300 = 100-4a2.
D1 = 0 → 100-4a2 → a2 = 25 → a = ±5.

х2-16х + 64 + х2 + а2 + 16-4х + 4а-ах-25 = 0 | ∙ 4
4x2-64x + 256 + x2 + a2 + 64-16x + 16a-2ax-100 = 0;
5x2-80x-2ax + a2 + 16a + 220 = 0;
5x2-2(40 + a)x + a2 + 16a + 220 = 0. Находим дискриминант по формуле для чётного второго коэффициента.
D1 = (40 + a)2-5(a2 + 16a + 220) = 1600 + 80a + a2-5a2-80a-1100 = 500-4a2.
D1 = 0 → 500-4a2 → a2 = 125 .
![]()
являются касательными к окружности (х-8)2 + (у + 4)2 = 25 (красной на чертеже).
3) Убедимся, что к окружности x2 + y2 = 25 (синей окружности) касательными

4х2 + х2-2ах + а2-100 = 0 → 5х2-2ах + а2-100 = 0.
Дискриминант D1 = a2-5(a2-100) = a2-5a2 + 500 = 500-4a2. Смотрим рассуждения в пункте 2) и убеждаемся в том, что и к синей окружности касательными являются прямые

Найдите все значения а, при каждом из которых система уравнений
Задача. Найдите все значения а, при каждом из которых система уравнений
![]()
имеет более одного решения.
Решение. Рассмотрим первое уравнение системы.
1) Пусть х2 + у2 -25 ≥ 0. Неравенство х2 + у2 ≥ 25 или х2 + у2 ≥ 52 описывает множество точек координатной плоскости, лежащих вне круга с центром в начале координат и радиусом R = 5. На чертеже круг показан зелёным цветом.
Раскроем модульные скобки.
х2 + 20х + у2 -20у + 75 = х2 + у2-25;
20x-20y + 100 = 0. Разделим обе части равенства на 20.
х-у + 5 = 0; у = х + 5. Графиком служит прямая у = х, смещённая вдоль оси Оу на 5 единичных отрезков. Нам подойдут только те точки прямой у = х + 5, которые будут лежать вне круга х2 + у2 = 25. На чертеже показана эта часть прямой синим цветом.

2) Пусть х2 + у2-25 ≤ 0. Неравенство х2 + у2 ≤ 25 или х2 + у2 ≤ 52 описывает множество точек координатной плоскости, лежащих внутри круга с центром в начале координат и радиусом R = 5.
Раскроем модульные скобки.
х2 + 20х + у2 -20у + 75 = -х2 -у2 + 25;
2х2 + 20х + 2у2 -20у + 50 = 0. Разделим обе части равенства на 2.
х2 + 10х + у2 -10у + 25 = 0. Преобразуем это выражение.
x2 + 2 ∙ х ∙ 5 + 52-52 + y2 -2 ∙ y ∙ 5 + 52-52 + 25 = 0;
(x2 + 2 ∙ х ∙ 5 + 52) + (y2 -2 ∙ y ∙ 5 + 52) = 25;
(х + 5)2 + (у-5)2 = 52.
Это уравнение описывает окружность с центром в точке (-5; 5) и радиусом R = 5. Нам подойдут только те точки этой окружности, которые будут лежать внутри окружности
х2 + у2 = 25. На чертеже эти точки окружности обозначены красным цветом.
Рассмотрим второе уравнение системы.
х-у = а. Запишем равенство в виде: у = х-а. Графиком этой функции будет служить прямая у = х, смещённая вдоль оси Оу на а единичных отрезков. Для того, чтобы система уравнений имела более одного решения прямая у = х-а должна пересечь сине-красную линию чертежа два и более раз.
Решим систему уравнений у = х-а и х2 + 10х + у2 -10у + 25 = 0.
Подставим значение у = х-а в выражение х2 + 10х + у2 -10у + 25 = 0. Получаем:
х2 + 10х + (х-а)2 -10(х-а) + 25 = 0. Раскроем скобки.
х2 + 10х + х2-2ах + а2-10х +10а + 25 = 0;
2х2 -2ах + а2 +10а + 25 = 0.
Дискриминант D1 = a2-2(а2 +10а + 25) = a2-2а2-20а-50 = -а2-20а-50. Если дискриминант больше нуля, то последнее уравнение, а значит, и вся система имеют два действительных корня.
D1 > 0 → -а2-20а-50 > 0 → а2 + 20а + 50 < 0.
Это неравенство будет верным при a1 < a < a2, где a1 и a2 — корни квадратного уравнения а2 + 20а + 50 = 0.
Решим уравнение а2 + 20а + 50 = 0.
D1 = 102-50 = 50.
![]()
Таким образом, а2 + 20а + 50 < 0

и не будет иметь общих точек с графиком первого уравнения данной системы (с сине-красной линией).

и будет касаться красной линии. В точке касания система будет иметь единственное решение. Очевидно, что если мы будем перемещать прямую
![]()
параллельно самой себе в направлении прямой у = х + 5, то каждый раз будем получать по две точки пересечения, и данная система будет иметь два решения.
![]()
совпадет с прямой у = х + 5, то это будет означать, что данная система имеет множество решений.
Если бы вторым уравнением данной системы было уравнение, приводящееся к виду
у = х + а, то мы бы сказали, что данная система будет иметь более двух решений
![]()
У нас же прямая у = х-а или у = х + (- а), следовательно, при условии:
![]()
прямая у = х + (- а) пересечёт сине-красную линию более двух раз и, значит, данная система будет иметь более одного решения.
![]()


