Профиль-математика Задачи по математике решайте как мы, решайте вместе с нами, решайте лучше нас! НАШЕ МЕНЮ НИЖЕ ВАМ В ПОМОЩЬ.
RSS
Записи с меткой "векторы"

Как найти скалярное произведение векторов

Задача. На координатной плоскости (рис.1) изображены векторы \( \vec{a}\ \)и \( \vec{b}\ \). Найдите скалярное произведение векторов \( \vec{a}\ \)и \( 2\vec{b}\ \).

Решение.

Скалярным произведением векторов

\( \vec{a}\ \){a1; a2} и \( \vec{b}\ \){b1; b2}

называется число a1b1 + a2b2.

Произведением вектора \( \vec{a}\ \){a1; a2} на число λ называется вектор \( λ\vec{a}\ \){λa1; λa2}.

Пусть вектор \( \vec{a}\ \)имеет началом точку

А11; у1), а концом – точку А22; у2).

Координатами вектора \( \vec{a}\ \) будем называть числа а1 = х2 1, а2 = у2 1.

    

У нас (см. рис.2) А1(-2; 5), А2(-6; -4).

Тогда \( \vec{a}(-4; -9)\ \).

Так как В1(6; 2), В2(1; -2), то \( \vec{b}\ \){-5; -4}.

Следовательно, \( 2\vec{b}(-10; -8)\ \).

Итак, искомое скалярное произведение

\( \vec{a}\ \)и \( 2\vec{b}\ \):

\( \vec{a}\ \)∙ \( 2\vec{b}\ \)= -4 ∙ (-10) + (-9) ∙ (-8) = 40 + 72 = 112.

Ответ: 112.

Задача. На координатной плоскости (рис.3) изображены векторы \( \vec{a}\ \)и \( \vec{b}\ \). Найдите скалярное произведение векторов \( 2\vec{a}\ \)и \( \vec{b}\ \).

         

Решение.

У нас (см. рис.4) А1(-6; 4), А2(-2; -2).

Тогда \( \vec{a}\ \){4; -6} и \( 2\vec{a}\ \){8; -12}.

Начало и конец вектора \( \vec{b}\ \) – точки В1(-1; -4) и В2(2; 3),

следовательно, \( \vec{b}\ \){3; 7}.

Итак, искомое скалярное произведение

\( 2\vec{a}\ \)и \( \vec{b}\ \):

\( 2\vec{a}\ \)∙ \( \vec{b}\ \)= 8 ∙ 3 + (-12) ∙ 7 = 24 -84 = -60.

Ответ: -60.

Задача. Даны векторы \( \vec{a}\ \)(2; -5) и  \( \vec{b}\ \)(5; 7). Найдите скалярное произведение векторов \( 0,6\vec{a}\ \)и \(1,4\vec{b}\ \).

Решение.

\( 0,6\vec{a}\ \)(0,6 ∙ 2; 0,6 ∙ (-5)); \( 0,6\vec{a}\ \)(1,2; -3).

\( 1,4\vec{b}\ \)(1,4 ∙ 5; 1,4 ∙ 7); \( 1,4\vec{b}\ \)(7; 9,8).

Скалярное произведение этих векторов

\( 0,6\vec{a}\ \)∙ \(1,4\vec{b}\ \) = 1,2 ∙ 7 + (-3) ∙ 9,8 = 8,4 -29,4 = -21.

Ответ: -21.

Задача. Даны векторы \( \vec{a}\ \)(2,2; -4) и

\( \vec{b}\ \)(-1,25; -1). Найдите скалярное произведение векторов \( 3\vec{a}\ \)и \(4\vec{b}\ \).

Решение.

Искомое скалярное произведение векторов

\( 3\vec{a}\ \)∙ \(4\vec{b}\ \) = 12\( \vec{a}\ \)∙ \( \vec{b}\ \) = 12(2,2 ∙ (-1,25) + (-4) ∙ (-1)) =

= 12(-2,75 + 4) = 12 ∙ 1,25 = 15.

Ответ: 15.

Задача. На координатной плоскости (рис.5) изображены векторы \( \vec{a}\ \), \( \vec{b}\ \)и \( \vec{c}\ \). Найдите скалярное произведение \( \vec{a}\ \)∙ \( (\vec{b}+\vec{c})\ \).

Решение.

Мы знаем, что скалярное произведение двух векторов равно сумме произведений соответственных координат этих координат.

Сумму векторов \( \vec{b}\ \) и \( \vec{c}\ \) заменим вектором \( \vec{d}\ \).

Найдём координаты векторов \( \vec{a}\ \)и \( \vec{d}\ \).

Смотрим рис. 6.

     

А1(-1; -2) и А2(-7; 3). Тогда \( \vec{a}\ \){-6; 5}.

B1(5; -4) и B2(5; 1). Тогда \( \vec{b}\ \){0; 5}.

C1(1; 4) и C2(-6; -1). Тогда \( \vec{c}\ \){-7; -5}.

При сложении двух векторов, складываются соответственные координаты этих векторов.

Так как \( \vec{d}\ \)= \( \vec{b}\ \)+\( \vec{c}\ \), то \( \vec{d}\ \){-7; 0}. Тогда искомое скалярное произведение:

\( \vec{a}\ \)∙ \( ( \vec{b}+\vec{c})\ \)= \( \vec{a}\ \)∙ \( \vec{d}\ \) = -6 ∙ (-7) + 5 ∙ 0 = 42.

Ответ: 42.

Задача. На координатной плоскости (рис.7) изображены векторы \( \vec{a}\ \), \( \vec{b}\ \)и \( \vec{c}\ \). Найдите скалярное произведение \( \vec{a}\ \)∙ \( (3 \vec{a}- 2 \vec{b})\ \).

Решение.

Применим распределительный закон умножения векторов.

\( \vec{a}\ \)∙ \( (3 \vec{b}- 2 \vec{c})\ \)= \( 3\vec{a}\ \) ∙ \( \vec{b}\ \)- \( 2\vec{a}\ \) ∙ \( \vec{c}\ \).

Найдём скалярные произведения векторов: \( \vec{a}\ \)и \( \vec{b}\ \); \( \vec{a}\ \)и \( \vec{c}\ \).

Определим координаты всех трёх векторов.

Смотрим рисунок 8.

     

А1(-2; -1) и А2(-7; 3). Тогда \( \vec{a}\ \){-5; 4}.

B1(3; -1) и B2(6; 4). Тогда \( \vec{b}\ \){3; 5}.

C1(2; 5) и C2(-2; 2). Тогда \( \vec{c}\ \){-4; -3}.

Тогда

\( \vec{a}\ \)∙ \( \vec{b}\ \)= -5 ∙ 3 + 4 ∙ 5 = -15 + 20 = 5;

\( \vec{a}\ \)∙ \( \vec{c}\ \)= -5 ∙ (-4) + 4 ∙ (-3) = 20 -12 = 8.

Искомое скалярное произведение векторов

\( \vec{a}\ \)∙ \( (3 \vec{b}- 2 \vec{c})\ \)= \( 3\vec{a}\ \) ∙ \( \vec{b}\ \)- \( 2\vec{a}\ \) ∙ \( \vec{c}\ \)= 3 ∙ 5 -2 ∙ 8 = 15 -16 = -1.

Ответ: -1.

Задача. Вычислите скалярное произведение векторов \( \vec{a}\ \) и \( \vec{b}\ \),

если |\( \vec{a}\ \)| = 3, |\( \vec{b}\ \)| = 4, а угол между ними равен 60°.

Решение.

Скалярным произведением двух векторов называется произведение их длин на косинус угла между ними.

\( \vec{a}\ \) ∙ \( \vec{b}\ \)= |\( \vec{a}\ \)| ∙ |\( \vec{b}\ \)| ∙ cosφ,

где φ – угол между векторами \( \vec{a}\ \) и \( \vec{a}\ \).

Получаем

\( \vec{a}\ \) ∙ \( \vec{b}\ \)= 3 ∙ 4 ∙ cos60° = 12 ∙ 0,5 = 6.

Ответ: 6.

Задача. Вычислите скалярное произведение векторов

\( \vec{p}\ \) = \( \vec{a}\ \)- \( \vec{b}\ \)- \( \vec{c}\ \) и \( \vec{q}\ \) = \( \vec{a}\ \)- \( \vec{b}\ \)+\( \vec{c}\ \),

если |\( \vec{a}\ \)| = 5, |\( \vec{b}\ \)| = 2, |\( \vec{c}\ \)| = 4 и \( \vec{a} \perp \vec{b}\ \).

Решение.

\( \vec{p}\ \) ∙ \( \vec{q}\ \)= (\( \vec{a}\ \)- \( \vec{b}\ \)-\( \vec{c}\ \)) ∙ (\( \vec{a}\ \)- \( \vec{b}\ \)+\( \vec{c}\ \))=

= \( \vec{a}\ \)2-\( \vec{a}\ \)∙ \( \vec{b}\ \)-\( \vec{a}\ \)∙ \( \vec{c}\ \)-\( \vec{a}\ \) ∙ \( \vec{b}\ \)+\( \vec{b}\ \)2+\( \vec{b}\ \) ∙ \( \vec{c}\ \)+\( \vec{a}\ \) ∙ \( \vec{c}\ \)-\( \vec{b}\ \) ∙ \( \vec{c}\ \)-\( \vec{c}\ \)2 =

= |\( \vec{a}\ \)|2+|\( \vec{b}\ \)|2-|\( \vec{c}\ \)|2-\(2 \vec{a}\ \)∙ \( \vec{b}\ \)= 52 + 22 -42 -0 =

= 25 + 4 -16 = 13.

Скалярное произведение двух взаимно перпендикулярных векторов равно нулю.

Так как у нас по условию \( \vec{a} \perp \vec{b}\ \), то \( \vec{a}\ \) ∙ \( \vec{b}\ \)= 0.

Ответ: 13.

Задача. Вычислите скалярное произведение векторов \( \vec{a}\ \)и \( \vec{b}\ \),

если \( \vec{a}\ \)= 3\( \vec{p}\ \) -2\( \vec{q}\ \) и \( \vec{b}\ \)= \( \vec{p}\ \)+ 4\( \vec{q}\ \), где \( \vec{p}\ \)и \( \vec{q}\ \) – единичные взаимно перпендикулярные векторы.

Решение.

\( \vec{a}\ \)∙ \( \vec{b}\ \)= (3\( \vec{p}\ \) -2\( \vec{q}\ \))(\( \vec{p}\ \)+ 4\( \vec{q}\ \)) = 3\( \vec{p}\ \)2 -2\( \vec{p}\ \)∙ \( \vec{q}\ \)+ 12\( \vec{p}\ \)∙ \( \vec{q}\ \) -8\( \vec{q}\ \)2 =

= 3|\( \vec{p}\ \)|2 +10\( \vec{p}\ \)∙ \( \vec{q}\ \) -8|\( \vec{q}\ \)|2 = 3 ∙ 1 + 10 · 0 -8 ∙ 1 = -5.

Ответ: -5.

Задача. Даны точки А(1; 3; 0), B(2; 3; -1),

C(1; 2; -1). Найдите скалярное произведение

векторов \( \vec{AB}\ \) и \( \vec{AC}\ \).

Решение.

Так как скалярное произведение векторов равно сумме произведений соответственных координат этих векторов, то найдём эти координаты.

\( \vec{AB}\ \){2-1; 3-3; -1-0} → \( \vec{AB}\ \){1; 0; -1};

\( \vec{AC}\ \){1-1; 2-3; -1-0} → \( \vec{AC}\ \){0; -1; -1}.

\( \vec{AB}\ \) ∙ \( \vec{AC}\ \) = 1 ∙ 0 + 0 ∙ (-1) + (-1) ∙ (-1) = 1.

Ответ: 1.

Как найти косинус угла между векторами, изображёнными на координатной плоскости

Задача. На координатной плоскости изображены векторы \( \vec{a}\ \)и \( \vec{b}\ \). Найдите cosα,

где α – угол между векторами \( \vec{a}\ \)и \( \vec{b}\ \).

1 способ решения – традиционный.

Применим формулу \( cos \alpha=\frac{ \vec{a}\: \cdot\: \vec{b}}{| \vec{a}|\: \cdot\:| \vec{b}|}\ \)  ( * )

Здесь \( \vec{a}\: \cdot\: \vec{b}\ \)- скалярное произведение векторов \( \vec{a}\ \)и \( \vec{b}\ \), которое равно сумме произведений соответственных координат этих векторов.

Требуется найти координаты и модули данных векторов.

Для вектора \( \vec{a}\ \)координаты начала А1(-1; -4) и конца А2(-4; 2).

Тогда абсцисса вектора \( \vec{a}\ \)равна -4-(-1) = -3; ордината 2-(-4) = 6.

Вектор \( \vec{a}\ \){-3; 6}, модуль вектора \( \vec{a}\ \):

\( | \vec{a}|=\sqrt{(-3)^2+6^2}\ \)= \( \sqrt{9+36}\ \)= \( \sqrt{45}\ \)= \( 3\sqrt{5}\ \).

Для вектора \( \vec{b}\ \)координаты начала В1(-3; 5) и конца В2(5; 1).

Тогда абсцисса  вектора \( \vec{b}\ \) равна 5-(-3) = 8; ордината 1-5 = -4.

Вектор \( \vec{b}\ \){8; -4}, модуль вектора \( \vec{b}\ \):

\( | \vec{b}|=\sqrt{8^2+(-4)^2}\ \)= \( \sqrt{64+16}\ \)= \( \sqrt{80}\ \)= \( 4\sqrt{5}\ \).

Все найденные значения подставляем в формулу ( * ):

\( cos \alpha=\frac{-3\: \cdot\:8\:+\:6\: \cdot\:(-4)}{3\sqrt{5}\ \cdot \:4\sqrt{5}}\ \);

\( cos \alpha=\frac{-48}{12\: \cdot\:5 }\ \);

\( cos \alpha=-\frac{4}{5}\ \);

cosα = -0,8.

Ответ: -0,8.

2 способ решения – нас не будут интересовать координаты векторов.

Выберем точку с целыми координатами на векторе \( \vec{a}\ \).

Пусть это будет точка М(-3; 0). Отложим от этой точки вектор \( \vec{MN}\ \), сонаправленный вектору \( \vec{b}\ \) так, чтобы точка N имела целые координаты. Достроим треугольник АМN.

     

Сторона АМ этого треугольника – это гипотенуза прямоугольного треугольника с катетами 2 и 1.

АМ2 = 22 + 12 = 4 + 1= 5;

\( AM=\sqrt{5}\ \).

Сторона МN этого треугольника – это гипотенуза прямоугольного треугольника с катетами 4 и 2.

МN2 = 42 + 22 = 16 + 4 = 20;

\( MN=\sqrt{20}\ \) или \( MN=2\sqrt{5}\ \).

Сторона АN этого треугольника – это гипотенуза прямоугольного треугольника с катетами 5 и 4.

АN2 = 52 + 42 = 25 + 16 = 41;

\( AN=\sqrt{41}\ \).

Искомый угол АМТ обозначим через α

На основании теоремы косинусов

\( cos \alpha=\frac{AM^2+MN^2-AN^2}{2 \cdot AM\: \cdot\:MN}\ \);

\( cos \alpha=\frac{5+20-41}{2\sqrt{5}\: \cdot\:2\sqrt{5}}\ \);

\( cos \alpha=-\frac{16}{4\: \cdot\:5 }\ \);

\( cos \alpha=-\frac{4}{5}\ \);

cosα = -0,8.

Ответ: -0,8.

Ещё одна задача.

Задача. На координатной плоскости изображены векторы \( \vec{a}\ \)и \( \vec{b}\ \). Найдите cosα, где α – угол между векторами \( \vec{a}\ \)и \( \vec{b}\ \).

Смотрим видео.

вход на сайт тестов онлайн по математике для 10 класса
Тесты по математике

Наверх