Профиль-математика Задачи по математике решайте как мы, решайте вместе с нами, решайте лучше нас!
RSS
Записи с меткой "при каждом из которых множество значений функции содержит отрезок"

Задача. Найдите все значения а, при каждом из которых множество значений функции содержит отрезок [0; 1]

Задача. Найдите все значения а, при каждом из которых множество значений функции

Решение. Отрезок [0; 1] содержится в множестве значений данной функции тогда и только тогда, когда уравнения

имеют решения.  Решаем каждое из этих уравнений.

Знаменатель этой дроби можно записать в виде:

(10х+а)2+15. Это выражение  при любых а и х положительно, поэтому данная дробь будет равна нулю, если числитель дроби будет равен нулю.

5а+150х-10ах=0  →  а+30х-2ах=0   →  2х(а-15)=а. Это уравнение имеет решение при любом а ≠ 15.

Умножим обе части равенства на знаменатель дроби.

5а+150х-10ах=100х2+20ах+а2+25. Упростим это выражение.

100х2+20ах+а2+25-5а-150х+10ах=0   →   100х2+30ах-150х+а2-5а+25=0;

100х2+2(15а-75)х+а2-5а+25=0. Это уравнение имеет решение тогда и только тогда, когда его дискриминант неотрицателен.

D1 = 225a2-2250a+5625-100a2+500a-2500=125a2-1750a+3125=125(a2-14a+25)≥0. Решим уравнение  a2-14a+25=0. Дискриминант этого уравнения

D’=72-25=49-25=24.

Тогда корни уравнения

Решениями неравенства (a2-14a+25)≥0

служит множество значений переменной а, удовлетворяющих условию

Исключаем из этих промежутков значение а ≠ 15.

Найдите все значения параметра а, при каждом из которых множество значений данной функции содержит отрезок [2; 3].

Задача. Найдите все значения параметра а, при каждом из которых множество значений

Решение. ОДЗ. a ≥ -1. Преобразуем функцию.

Так как наименьшее значение а = -1, то наименьшее значение с = 1.

По условию необходимо, чтобы у  [2; 3],

Знаменатель этой дроби положителен при любых значениях х и с, поэтому, и числитель дроби должен быть неотрицателен.

c-2cos3x-2(sin23x + c2) ≥ 0  →    c-2cos3x-2(1-cos23x)-2c2 ≥ 0;

c -2cos3x-2 + 2cos23x-2c2 ≥ 0  →   2cos23x-2cos3x + c-2c2-2 ≥ 0.

Сделаем замену: cos3x = z. Получаем неравенство: 2z2-2z + c-2c2-2 ≥ 0. ( * )

Решим уравнение: 2z2-2z + c-2c2-2 = 0. ( ** )

Найдём дискриминант D1 = 1-2(c-2c2-2) = 1-2с + 4с2 + 4 = 4с2-2с + 5 > 0 при любом значении с. Корни уравнения ( ** ):

Знаменатель этой дроби положителен при любых значениях х и с, поэтому, и числитель дроби должен быть неотрицателен.

c-2cos3x-3(sin23x + c2) ≤ 0  →    c-2cos3x-3(1-cos23x)-3c2 ≤ 0;

c-2cos3x-3 + 3cos23x-2c2 ≤ 0  →   3cos23x-2cos3x + c-3c2-3 ≤ 0.

Сделаем замену: cos3x = z. Получаем неравенство: 3z2-2z + c-3c2-3 ≤ 0. ( *** )

Решим уравнение: 3z2-2z + c-3c2-3 = 0. ( **** )

Найдём дискриминант D1 = 1-3(c-3c2-3) = 1-3с + 9с2 + 9 = 9с2-3с + 10 > 0 при любом значении с. Корни уравнения ( **** ):

3) Чтобы найти общее решение неравенств ( * ) и ( *** ) нужно правильно расположить числа

на числовой прямой. Для  определённости подставим с = 1    в каждое из выражений и получим:

Очевидно, что z’1 ≤  z1 ≤  z2 ≤  z‘2 . Отмечаем эти числа на числовой прямой.

Двойная штриховка показывает общее решение неравенств ( * ) и ( *** ).

Итак, мы получили: z’1  ≤  z  ≤  z1,

Так как z = cos3x, а-1 ≤ cos3x ≤ 1, то -1 ≤ z ≤ 1, то есть необходимо, чтобы

Решаем первое неравенство.

(помним, что  9с2-3с + 10 > 0 при любом значении с).

2-3с-6 ≤ 0   →  3с2-с-2 ≤ 0.

Найдём корни уравнения  3с2-с-2 = 0.  Дискриминант D = 1-4 3 (-2) = 25.

Неравенство 3с2-с-2 ≤ 0 выполняется при

Решаем второе неравенство.

Это неравенство верно при любых значениях с

( а что неравенство 4с2-2с + 5 > 0 при любом значении с мы помним).

Итак, неравенство:

Так как наименьшее возможное значение с = 1, то получаем

Ответ: а = -1.

Наверх