Профиль-математика

Задачи по математике решайте как мы, решайте вместе с нами, решайте лучше нас!
RSS

Решить логарифмическое неравенство

Решите неравенство lg4(x2 – 26)4 – 4lg2(x2 – 26)2 ≤ 240.

Применим формулу для логарифма степени и запишем

lg(x2 – 26)4  как  2lg(x2 – 26)2. А почему не как 4lg(x2 – 26)? Потому что в этом случае число под знаком логарифма должно быть положительным, а не просто не равным нулю, как мы записали в ОДЗ. Это значит, что преобразованное далее неравенство не будет равносильно данному. Итак:

lg4(x2 – 26)4 = (lg(x2 – 26)4 )4 = (2lg(x2 – 26)2 )4 = 24 · (lg(x2 – 26)2 )4 = 16lg4(x2 – 26)2.

Тогда данное неравенство примет вид:

16lg4(x2 – 26)2 – 4lg2(x2 – 26)2 ≤ 240. Делим обе части на 4.

4lg4(x2 – 26)2 – lg2(x2 – 26)2 – 60 ≤ 0.

Сделаем замену. Пусть lg2(x2 – 26)2 = t.

Решим неравенство. 4t2 – t – 60 ≤ 0.

Находим корни квадратного трёхчлена.

4t2 – t – 60 = 0. D = b2 – 4ac = 1 + 960 = 961 = 312.

0 ≤  lg2(x2 – 26)2 ≤ 4.

lg2(x2 – 26)2 ≤ 4.  Извлекаем из обеих частей квадратные корни.

| lg(x2 – 26)2| ≤ 2.

-2 ≤ lg(x2 – 26)2 ≤ 2. (см. рис. 2)

Запишем числа -2 и 2 в виде десятичного логарифма.

lg0,01 ≤ lg(x2 – 26)2 ≤ lg100. Логарифмическая функция с основанием 10 является возрастающей, поэтому последнее неравенство равносильно неравенству

0,01 ≤ (x2 – 26)2 ≤ 100. А это неравенство равносильно системе неравенств

Решаем каждое неравенство системы по отдельности, а затем находим их общее решение. Оно и будет служить решением данного неравенства.

I. (x2 – 26)2 ≥ 0,01; (см. рис.3)

| x2 – 26| ≥ 0,1;

1) x2 – 26 ≤ -0,1                 

x2 ≤ 25,9.

2)  x2 – 26 ≥ 0,1

  x2 ≥ 26,1.

Решаем второе неравенство системы ( * )

II. (x2 – 26)2 ≤ 100;

| x2 – 26| ≤ 10;

-10 ≤ x2 – 26 ≤ 10                           

16 ≤ x2 ≤ 36;     

Полученные решения неравенств I и II покажем синим и зелёным цветом на координатной прямой. Пересечение этих промежутков и будет решением нашего неравенства.

Тригонометрические уравнения на ЕГЭ

Пример 1.

а) Решить уравнение cos4x+cos2x=0.

б) Найдите все корни этого уравнения, принадлежащие отрезку [-π; π/3].

Решение.

а) Решаем уравнение cos4x+cos2x=0.

Применим формулу               

Tогда данное уравнение примет вид: 2cos3x⋅cosx=0. Отсюда следует, что либо cos3x=0 либо cosx=0.

  • Если cos3x=0, то 3х=π/2+πn, отсюда х=π/6+πn/3, где nϵZ.
  • Если cosx=0, то х=π/2+πn, где nϵZ.

Заметим, что решения уравнения cosx=0 входят в решения уравнения cos3x=0, поэтому общим решением данного уравнения будут числа x=π/6+πn/3, где nϵZ.

б) Найдём все корни этого уравнения, принадлежащие отрезку [-π; π/3].

Рассмотрим общее решение x=π/6+πn/3, где nϵZ на единичной окружности. Здесь значение πn/3 означает, что нужно брать n раз угол π/3. Отмечаем угол π/6, а затем углы, полученные поворотом угла π/6 на π/3, полученный таким образом угол π/2 опять повернём на π/3, получится угол 5π/6, затем угол 5π/6+ π/3=7π/6, следующий угол

7π/6+ π/3=9π/6=3π/2, и, наконец, 3π/2+ π/3=11π/6. Смотрите рисунок 1.

         

Все отмеченные углы рассмотрим на отрезке [-π; π/3]. Смотрим рисунок 2. Получились числа -5π/6; -π/2; -π/6; π/6.

Ответ: а) π/6+πn/3, где nϵZ; б) -5π/6; -π/2; -π/6; π/6.

Пример 2.

а) Решить уравнение cos4x-sin2x=0.

б) Найдите все корни этого уравнения, принадлежащие отрезку [0; π].

Решение.

а) Применим формулу 1-cos2α=2sin2α; тогда данное уравнение примет вид:

1-2sin22x-sin2x=0; 2sin22x+sin2x-1=0. Сделаем замену: sin2x=t.

Получаем равенство: 2t2+t-1=0.

У нас a-b+c=0, поэтому по методу коэффициентов t1=-1, t2=1/2.

  • При sin2x=-1 получаем 2х=-π/2+2πn, отсюда х=-π/4+πn, где nϵZ.
  • При sin2x=1/2 получаем 2х=π/6+2πn и 2х=5π/6+2πn, где nϵZ.

Тогда х=π/12+πn и х=5π/12+πn, где nϵZ.

Рассмотрим решения 2х=-π/2+2πn, 2х=π/6+2πn и 2х=5π/6+2πn на единичной окружности. Возьмём значения 2х при n=0. Углы -π/2, π/6 и 5π/6 отличаются друг от друга на значение 2π/3. Тогда общим решением будут являться числа

2х=π/6+(2π/3)n, отсюда общим решением данного уравнения будут

значения  х=π/12+(π/3)n, где nϵZ.

б) Найдём все корни этого уравнения, принадлежащие отрезку [0; π]. Для этого в общее решение х=π/12+(π/3)n, где nϵZ будем подставлять такие целые значения nϵZ,

чтобы хϵ[0; π].

Возьмём n=0, тогда х=π/12 ϵ[0; π].

При n=1 получим х= π/12+π/3= π/12+4π/12=5π/12 ϵ[0; π].

При n=2 получим х= π/12+2π/3= π/12+8π/12=9π/12=3π/4 ϵ[0; π].

При n=3 получим х= π/12+π, и это значение не входит в заданный отрезок [0; π].

Ответ: а) π/12+(π/3)n, где nϵZ; б) π/12, 5π/12, 3π/4.

Пример 3.

а) Решить уравнение

б) Найдите все корни этого уравнения, принадлежащие отрезку [π; 3π/2].

Решение.

а) Применим формулу cos(α-β)=cosα∙cosβ+sinα∙sinβ; тогда данное уравнение примет вид:

cos3x=cos23x; cos23x-cos3x=0;  cos3x(cos3x-1)=0;

cos3x=0 или cos3x-1=0.

  • Если cos3x=0, то 3х=π/2+πn, тогда х= π/6+(π/3)n, где nϵZ.
  • Если cos3x-1=0, то cos3x=1, тогда 3х=2πm, тогда х=(2π/3)m, где mϵZ.

Общие решения данного уравнения: х=π/6+(π/3)n, где nϵZ и х=(2π/3)m, где mϵZ.

б) Найдём все корни этого уравнения, принадлежащие отрезку [π; 3π/2].

Мы получили значения 3х=π/2+πn и 3х=2πm. Отметим их на единичной окружности, сделав замену 3х=t. Смотрите рисунок 3.

     

Необходимо выполнение условие хϵ[π; 3π/2]. Отсюда следует, что 3хϵ[3π; 9π/2].

Все отмеченные углы рассмотрим на отрезке [3π; 9π/2]. Смотрим рисунок 4. Получились числа 7π/2; 4π; 9π/2. Так как это значения 3х, то делим каждое из них на 3. Получим: 7π/6; 4π/3; 3π/2.

Ответ: а) π/6+(π/3)n, где nϵZ; (2π/3)m, где mϵZ.

б) 7π/6; 4π/3; 3π/2.

Периметр прямоугольника равен 10, а площадь равна 4,5. Найти диагональ прямоугольника

Задача 1. Периметр прямоугольника равен 28, а площадь равна 92. Найти диагональ прямоугольника.

Используйте этот чертёж ко всем следующим задачам.

Решение. Пусть нам дан прямоугольник со сторонами а и b. Нужно найти диагональ прямоугольника d. Диагональ d является гипотенузой прямоугольного треугольника с катетами а и b. На основании теоремы Пифагора d2=a2+b2. Следовательно, необходимо найти a2+b2. По условию периметр прямоугольника равен 28. Так как формула периметра прямоугольника P=2(a+b), то a+b=14. Так как площадь прямоугольника равна S=ab, и по условию S=92, то ab=48. Рассуждаем: сумма чисел а и b равна 14, а произведение 48. Вспоминаем теорему Виета, когда мы подбирали корни квадратного уравнения

x2-14x+48=0 и находили x1=6 и х2=8. В нашем случае а=6 и b=8 или а=8 и b=6. Тогда основании теоремы Пифагора d2=a2+b2. Получаем d2=62+82=36+64=100. Отсюда d=10. Ответ: 10.

Задача 2. Периметр прямоугольника равен 10, а площадь равна 4,5. Найти диагональ прямоугольника.

Решение. Рассуждаем аналогично. Теперь по условию a+b=5, ab=4,5. Понимаем, что числа а и b не будут целыми, и подобрать их не получится. Однако найти требуется диагональ d, которая является является гипотенузой прямоугольного треугольника с катетами а и b. На основании теоремы Пифагора d2=a2+b2. Следовательно, необходимо найти a2+b2, а значения а и b находить по отдельности нет необходимости. Возведём обе части равенства a+b=5 в квадрат. Получим (a+b)2=52. Отсюда a2+2ab+b2=25, тогда  a2+b2=25-2ab. Так как ab=4,5, то 2ab=9. Получаем: a2+b2=25-9=16. Значит d2=16, а d=4. Ответ: 4.

Задача 3. Периметр прямоугольника равен 3,6, а площадь равна 0,34. Найти диагональ прямоугольника.

Решение. Рассуждаем аналогично. По условию a+b=1,8, ab=0,34. Диагональ d будет равна квадратному корню из суммы квадратов a2+b2. Возведём обе части равенства a+b=1,8 в квадрат. Получим (a+b)2=(1,8)2. Отсюда a2+2ab+b2=3,24, тогда  a2+b2=25-2ab. Так как ab=0,34, то 2ab=0,68. Получаем: a2+b2=3,24-0,68=2,56. Значит d2=2,56, а d=1,6. Ответ: 1,6.

Задача 4. Диагональ прямоугольника равна 5, а площадь равна 5,5. Найти периметр прямоугольника.

Решение. Используем рассуждения предыдущих задач. В этой задаче  d=5, а по теореме Пифагора гипотенуза d равна сумме квадратов катетов а и b прямоугольного треугольника (смотрите рисунок), значит, d2=a2+b2=25. Площадь прямоугольника S=ab, и по условию равна 5,5. Значит, ab=5,5; тогда 2ab=11. Требуется найти периметр прямоугольника. Так как по формуле периметр P=2(a+b), то достаточно найти сумму смежных сторон прямоугольника (a+b). Имея a2+b2=25 и 2ab=11, сложим эти два равенства почленно. Получаем:

a2+2ab+b2=25+11, отсюда (a+b)2=36, a+b=6. Так как сумма смежных сторон прямоугольника равна 6, то периметр будет равен 12. Ответ: 12.

Задача 5. Диагональ прямоугольника равна 7, а площадь равна 7,5. Найти периметр прямоугольника. Задача совершенно такая же, как предыдущая задача 4, только числа другие. Решите задачу 5 самостоятельно. Ответ: 16.

Задача 6. Диагональ прямоугольника равна 9, а его периметр равен 22. Найти площадь прямоугольника.

Решение. Используем рассуждения предыдущих задач. Стороны прямоугольника а и b являются катетами прямоугольного треугольника, а диагональ прямоугольника d – гипотенузой этого прямоугольного треугольника. На основании теоремы Пифагора d2=a2+b2 , значит, так как d2=92=81, то a2+b2=81. По условию периметр прямоугольника равен 22, следовательно, полупериметр a+b=11. Возведём в квадрат обе части последнего равенства и получим:

a2+2ab+b2=121, отсюда 2ab=121-(a2+b2)=121-81=40. Площадь квадрата S=ab=40:2=20. Ответ: 20.

Задача 7. Диагональ прямоугольника равна 11, а его периметр равен 24. Найти площадь прямоугольника. Задача совершенно такая же, как предыдущая задача 6, только числа другие. Решите задачу 7 самостоятельно. Ответ: 11,5.

Делаем выводы. Для того чтобы найти диагональ, периметр или площадь прямоугольника не всегда является необходимым находить стороны прямоугольника по отдельности. Чётко ставьте себе задачу, исходя из её условий, и вы найдёте рациональное решение.

Основание пирамиды SABC — равносторонний треугольник

Задача. Основание пирамиды SABC — равносторонний треугольник АВС. Боковое ребро SA перпендикулярно плоскости основания, точки М и N — середины рёбер ВС и АВ соответственно, причём SN=AM.

а) Докажите, что угол между прямыми  АМ и SN равен 60°.

б) Найдите расстояние между этими прямыми,

Решение.

а) Докажем, что угол между прямыми АМ и SN равен 60°. Прямые АМ и SN являются скрещивающимися.

Углом между скрещивающимися прямыми считают угол между соответственно параллельными им пересекающимися прямыми.

Прямую АМ заменим параллельной ей прямой FN. Углом между скрещивающимися прямыми  АМ и SN будет угол между пересекающимися прямыми FN и SN. Обозначим этот угол через α и докажем, что он равен 60°.

Проведём АК параллельно ВС. Соединим точки S и К. Так как точка М – середина ВС, а треугольник АВС равносторонний, то АМ – медиана, высота и биссектриса треугольника АВС. Тогда прямая FK, параллельная АМ будет также перпендикулярна  ВС. А так как АК параллельна ВС, то АК перпендикулярна и АМ, и  FK. Таким образом, четырёхугольник АМFК является прямоугольником. Прямая SК является наклонной к плоскости  АВС, SА – перпендикуляр к плоскости АВС, АК – проекция прямой  SК на плоскость АВС. Прямая FK, проведённая через основание наклонной SК перпендикулярно её проекции АК,  будет перпендикулярна наклонной SК на основании теоремы о трёх перпендикулярах. Значит, треугольник SNK является прямоугольным с прямым углом при вершине К. Катет NK равен половине FK, а значит, и половине АМ (противоположные стороны прямоугольника АМFК равны, а равенство отрезков FN и NK следует из равенства прямоугольных треугольников NFB и NKA по равным катетам BN и AN и вертикальным углам при вершине N).

По условию SN=AM , поэтому

Итак, из прямоугольного треугольника SNK

Отсюда следует:

что и требовалось доказать.

б) Найдём расстояние между скрещивающимися прямыми АМ и SN. Используем метод проекций, опирающийся на следующую лемму.

Лемма Шарыгина И.Ф.

Расстояние между скрещивающимися прямыми равно расстоянию от точки, являющейся проекцией одной из прямых на перпендикулярную ей плоскость, до проекции другой прямой на эту плоскость.

У нас SKA – плоскость, перпендикулярная прямой АМ (АМ перпендикулярна SA по условию и АК по построению). А – проекция АМ на плоскость SKA. SN – наклонная к плоскости SKA, NK – перпендикуляр, SК – проекция наклонной SN к плоскости SKA. Расстояние от точки А до SК и будет являться искомым расстоянием между скрещивающимися прямыми АМ и SN. Проведём АЕ перпендикулярно SК. Отрезок АЕ – это высота прямоугольного треугольника SKA, проведённая к гипотенузе SK.

В равностороннем треугольнике АВС

Так как в треугольнике АВМ точка N – середина стороны АВ, FN параллельна АМ, поэтому FN – средняя линия треугольника АВМ. Точка F – середина отрезка ВМ.

АК = МF как противоположные стороны прямоугольника АМFК.

В прямоугольном треугольнике SAN гипотенуза

По теореме Пифагора SA2 = SN2 — AN2.

Тогда SA = 3.

Из прямоугольного треугольника SKN

катет SK = SN ∙ sinα = SN ∙ sin60°.

Ответ: 1. 

Смотрите видео решение этой задачи

Назовём натуральное число палиндромом

Задача. Назовём натуральное число палиндромом, если в его десятичной записи все цифры расположены симметрично (совпадают первая и последняя цифры, вторая и предпоследняя, и т.д.). Например, числа 121 и 953359 являются палиндромами, а числа 10 и 953359 не являются палиндромами.

а) Приведите пример числа-палиндрома, который делится на 15.

б) Сколько существует пятизначных чисел-палиндромов, делящихся на 15?

в) Найдите 37-е по величине число-палиндром, которое делится на 15.

Решение.

Так как наше число-палиндром должно делиться на 15, то оно должно делиться и на 5 и на 3. На 5 делятся числа, оканчивающиеся на 0 и на 5. Однако, число не может начинаться с нуля, а, значит, и не может оканчиваться нулём, поэтому искомые числа будут оканчиваться на 5 и начинаться тоже с цифры 5. Имеем в виду, что на 3 делится число, сумма цифр которого делится на 3.

а) Так как 55 не делится на 3, то среди двузначных чисел нет чисел-палиндромов, делящихся на 15. Из трёхзначных чисел наименьшим числом-палиндромом, делящимся на 15, будет число 525. Оно оканчивается на «5», поэтому делится на 5, а также число 525 делится на 3, так как сумма цифр этого числа 5+2+5=12 делится на 3.

Так как в пункте в) нам нужно будет указать 37-е по величине число-палиндром, которое делится на 15, то найдём все трёхзначные и четырёхзначные числа-палиндромы, которые делится на 15. Все наши числа начинаются и оканчиваются на «5», поэтому нам остаётся только позаботиться о том, чтобы сумма цифр каждого из чисел делилась на 3. Так как в любом искомом числе-палиндроме уже есть две пятерки  (5+5=10), то общая сумма цифр трёхзначного числа-палиндрома может быть равна 12 или 15 или 18, т.е. в серединке между двумя «пятёрками» может стоять цифра 2 (число 525) или 5 (число 555) или 8 (число 585). Таким образом, среди трёхзначных чисел всего три числа-палиндрома, которые делятся на 15.

Переходим к четырёхзначным числам. Первая и последняя цифры – пятёрки, а сумма двух (одинаковых) цифр, стоящих в середине может быть равна 2 (число 5115) или 8 (число 5445) или 14 (число 5775). Других вариантов нет. Таким образом, среди четырёхзначных чисел тоже нашлись всего три числа-палиндрома, которые делятся на 15.

б) Приступаем к нахождению пятизначных чисел-палиндромов, делящихся на 15. Нас будет интересовать сумма трёх средних цифр каждого пятизначного числа. Так как общая сумма всех цифр пятизначного числа должна делиться на 3, то она может быть равна или 12 или 15 или 18 или 21 или 24 или 27 или 30 или 33 или 36.  Учитывая сумму первой и последней цифр (5+5=10), заключаем, что сумма средних трёх цифр может быть равна 2 или 5 или 8 или 11 или 14 или 17 или 20 или 23 или 26. Выпишем в порядке возрастания эти трёхзначные числа-палиндромы, стоящие между двумя «пятёрками» в искомых пятизначных числах-палиндромах, делящихся на 15.

020, 050, 080, 101, 131, 161, 191, 212, 242, 272, 323, 353, 383, 404, 434, 464, 494, 515, 545, 575, 626, 656, 686, 707, 737, 767, 797, 818, 848, 878, 929, 959, 989. Пересчитываем. Их 33, и это числа:

50205, 50505, 50805, 5105, 51315, 51615, 51915, 52125, 52425, 52725, 53235, 53535, 53835, 54045, 54345, 54645, 54945, 55155, 55455, 55755, 56265, 56565, 56865, 57075, 57375, 57675, 57975, 58185, 58485, 58785, 59295, 59595, 59895.

в) Так как число 50205 уже 7-ое по счёту число-палиндром, делящееся на 15 (помните, были три трёхзначных числа и три четырёхзначных числа?), то на 37-ом месте стоит число 59295.

Ответ: а) 525; б) 33; в) 59295.

Приведите пример трёхзначного числа, у которого ровно 5

Задача. а) Приведите пример трёхзначного числа, у которого ровно 5 натуральных делителей.

б) Существует ли такое трёхзначное число, у которого ровно 15 натуральных делителей?

в) Сколько существует таких трёхзначных чисел, у которых ровно 20 натуральных делителей?

Решение.

Мы умеем записывать каноническое разложение числа на простые множители. Например, 24 = 23 3 – каноническое разложение числа 24 на простые множители. Существует правило:

если число можно представить в виде

где m1, m2, … , mk – натуральные показатели, то количество делителей числа n будет равно (m1+1) (m2+1) ∙ ∙∙∙ ∙ (mk+1).

Так, например, у числа 24 = 23 31 всего (3+1)(1+1) = 4 2 = 8 делителей.

Проверьте: 24 делится на 1; 2; 3; 4; 6; 8; 12 и на 24.

а) Трёхзначное число, у которого 5 делителей, в каноническом виде есть произведение степеней с такими натуральными делителями m1, m2, … , mk,

чтобы (m1+1) (m2+1) ∙ ∙∙∙ ∙ (mk+1) = 5. Так как 5 = 1 5, то показатели степеней должны быть 0 и 4.

Подойдёт а=5. Получаем 1 54 = 625. Это число имеет 5 делителей: 1; 5; 25; 125; 625.

б) 15 = 3 5. Следовательно, будем искать число, каноническое разложение которого равно

Возьмём а1 = 3; а2 = 2 для примера.

Получим 32 ∙ 24 = 9 ∙ 16 = 144 – трёхзначное число.

У числа 144 ровно 15 делителей: 1; 2; 3; 4; 6; 8; 9; 12; 16; 18; 24; 36; 48; 72; 144.

Если возьмём а1 = 2; а2 = 3, то получим 22 ∙ 34 = 4 ∙ 81 = 324 – тоже трёхзначное число, и у него тоже ровно 15 делителей:

1; 2; 3; 4; 6; 9; 12; 18; 27; 36; 54; 81; 108; 162; 324.

в) 20 = 4 5, значит, возможно произведение  двух степеней с натуральными основаниями, показатели которых 3 и 4.

Например, 23 34 = 648 (подходит, это 1-ое трёхзначное число),

24 ∙ 33 = 432 (2-ое число), 24 ∙ 53 = 2000 (это четырёхзначное число, не подойдёт).

20 = 2 ∙ 2 ∙ 5. Это означает, что каноническое разложение может представлять собой произведение трёх степеней с простыми натуральными основаниями и показателями 1, 1 и 4.

Подберём простые натуральные числа в качестве оснований степеней а1, а2 и а3 так, чтобы в результате получались трёхзначные числа.

24 ∙ 3 ∙ 5 = 240 (3-е число),

24 ∙ 3 ∙ 7 = 336 (4-ое число),

24 ∙ 3 ∙ 11 = 528 (5-ое число),

24 ∙ 3 ∙ 13 = 624 (6-ое число),

24 ∙ 3 ∙ 17 = 816 (7-ое число),

24 ∙ 3 ∙ 19 = 912 (8-ое число),

24 ∙ 5 ∙ 7 = 560 (9-ое число),

24 ∙ 5 ∙ 11 = 880 (10-ое число),

34 ∙ 2 ∙ 5 = 810 (11-ое число),

34 ∙ 2 ∙ 7 = 1134 (не подойдёт).

Ответ: а) 625; б) да, 144; в) 11.

Каждый из группы учащихся сходил в кино или в театр

Задача. Каждый из группы учащихся сходил в кино или в театр, при этом возможно, что кто-то из них мог сходить и в кино, и в театр. Известно, что в театре мальчиков было не более 3/10 от общего числа учащихся группы, посетивших театр, а в кино мальчиков было не более 5/12 от общего числа учащихся группы, посетивших кино.

а) Могло ли быть в группе 8 мальчиков, если дополнительно известно, что всего в группе было 16 учащихся?

б) Какое наибольшее количество мальчиков могло быть в группе, если дополнительно известно, что всего в группе было 16 учащихся?

в) Какую наименьшую долю могли составлять девочки от общего числа учащихся в группе без дополнительного условия пунктов а и б?

Решение.

а) Дробь 3/10 – несократимая. Заметим, что не могла быть первоначальной дробь 6/20 , т.к. в группе всего 16 учащихся.

Вывод: в театр сходили 3 мальчика и 10-3=7 девочек.

м   м   м       д   д   д   д   д   д     д

Аналогично, рассматривая дробь 5/12 , заключаем, что в кино сходили 5 мальчиков и 12-5=7 девочек.

м   м   м   м   м      д   д   д   д   д   д     д

Если предположить, что в группе 8 мальчиков, то, поскольку всего 16 человек, девочек тоже 8. А это означает, что в театр ходили 6+1 девочка, в кино ходили те же 6 плюс одна другая девочка. Все сходится: в группе 16 человек: 8 мальчиков и 8 девочек. Ответ: да.

б) 8 мальчиков. Это вытекает из рассуждений в пункте а) и из условия: каждый из группы учащихся сходил в кино или в театр, при этом возможно, что кто-то из них мог сходить и в кино, и в театр.

в) Также из пункта а) следует, что наименьшее число девочек в группе равно 7, т.е. все эти семь девочек ходили и в кино и в театр. А так как мальчиков 8, то общее количество детей равно 7+8=15. Следовательно, доля девочек от общего количества учащихся составляет 7/15 .

Ответ: а) да; б) 8; в) 7/15.

Ученики одной школы писали тест

Задача. Ученики одной школы писали тест. Результатом каждого ученика является целое неотрицательное число баллов. Ученик считается сдавшим тест, если он набрал не менее 83 баллов. Из-за того, что задания оказались слишком трудными, было принято решение всем участникам теста добавить по 5 баллов, благодаря чему количество сдавших тест увеличилось.

а) Могло ли оказаться так, что после этого средний балл участников, не сдавших тест, понизился?

б) Могло ли оказаться так, что после этого средний балл участников, сдавших тест, понизился, и средний балл участников, не сдавших тест, тоже понизился?

в) Известно, что первоначально средний балл участников теста составил 90, средний балл участников, сдавших тест, составил 100, а средний балл участников, не сдавших тест, составил 75. После добавления баллов средний балл участников, сдавших тест, стал равен 103, а не сдавших тест – 79. При каком наименьшем числе участников теста возможна такая ситуация?

Решение.

а) Да, могло. Пример: пусть получены результаты теста 90, 90, 90, 78, 78, 78, 60, 60, 60.

Средний балл шести участников, не сдавших тест, равен

(78+78+78+60+60+60) : 6 = 69. После добавления всем участникам по 5 баллов результаты будут такими: 95, 95, 95, 83, 83, 83, 65, 65, 65.

Средний балл трёх участников, не сдавших тест равен (65+65+65) : 3 = 65. Как видим, средний балл участников, не сдавших тест, понизился.

б) Да, так могло быть. Вернемся к примеру, рассмотренному в пункте а). Итак, пусть получены результаты теста 90, 90, 90, 78, 78, 78, 60, 60, 60. Сдали тест всего трое учащихся.

Средний балл участников, сдавших тест равен (90+90+90) : 3 = 90.

После добавления всем участникам по 5 баллов результаты будут такими: 95, 95, 95, 83, 83, 83, 65, 65, 65. Участников, сдавших тест уже шестеро. Средний балл равен (95+95+95+83+83+83) : 6 = 89. Таким образом, средний балл участников, сдавших тест, понизился, и средний балл участников, не сдавших тест, тоже понизился.

в) Пусть первоначально было х участников, сдавших тест и у участников, не сдавших тест.

Зная, что первоначально средний балл участников теста составил 90, средний балл участников, сдавших тест, составил 100, а средний балл участников, не сдавших тест, составил 75, можно записать равенство:

90(х+у) = 100х+75у. Упростим это выражение:

90х+90у=100х+75у, отсюда 10х=15у или 2х=3у.

Затем всем участникам добавили по 5 баллов, и, возможно, это помогло р учащимся пополнить списки сдавших тест.

Тогда сдали тест (х+р) участников, а не сдавших будет (у-р) человек.

Зная, что при этом средний балл участников, сдавших тест, стал равен 103, а не сдавших тест – 79, составим равенство:

95(х+у) = 103(х+р)+79(у-р). Упрощаем это выражение.

95х+95у = 103х+103р+79у-79р;

8х+24р=16у или 2х+6р=4у. Так как 2х=3у, то 3у+6р=4у, тогда у=6р.

Так как мы выясняем, при каком наименьшем числе участников теста возможна такая ситуация, то возьмём р=1. Это будет означать, что добавление пяти баллов каждому участнику помогло лишь одному из них попасть в списки сдавших тест.

Тогда у=6 – это количество участников, не сдавших тест при первоначальном подсчёте баллов;

х = (3 6) : 2 = 9 – это количество участников, сдавших тест при первоначальном подсчёте баллов. Вывод: х+у = 9+6 = 15 – наименьшее число участников, при которых стала возможной описанная в пункте в) ситуация.

Ответ: а) да; б) да; в) 15.

Приведите пример четырёхзначного числа, произведение цифр которого в 10 раз больше суммы цифр этого числа

Задача. а) Приведите пример четырёхзначного числа, произведение цифр которого в 10 раз больше суммы цифр этого числа.

б) Существует ли такое четырёхзначное число, произведение цифр которого в 175 раз больше суммы цифр этого числа?

в) Найдите все четырёхзначные числа, произведение цифр которых в 50 раз больше суммы цифр этого числа?

Решение.

а) 2355.

На самом деле, сумма 2+3+5+5=15, произведение 2 3 5 5 = 150 и 150 > 15 в 10 раз.

б) Пусть искомое четырёхзначное число записано цифрами x, y, z и t (в любой последовательности). По условию можно составить равенство:

то какие-то три из чисел x, y, z и t должны быть кратны числам 5 и 7. Но каждое из чисел x, y, z и t не меньше 1 и не больше 9, поэтому три числа из четырёх равны 5, 5 и 7. Пусть x=5, y=5, z=7.

отсюда после сокращения дроби получим 17 + t = t. Это уравнение решений не имеет, следовательно, нет такого четырёхзначного числа, произведение цифр которого в 175 раз больше суммы цифр этого числа.

в) Будем искать такие цифры x, y, z и t, чтобы выполнялось равенство:

Так как 50 = 2 5 5, то две из четырёх цифр равны по 5, а третья кратна числу 2, т.е. может быть равна 2 или 4 или 6 или 8. Пусть x=5, y=5, z=2. Тогда получим уравнение

Отсюда 12 + t = t. Это уравнение решений не имеет, поэтому возьмём z=4.

отсюда 14 + t = 2t или t=14. Однако, t – натуральное число, меньшее или равное 9, следовательно, z=4 не подойдёт.

Пусть z=6, тогда получаем равенство:

и после сокращения дроби имеем: 16 + t = 3t, откуда t = 8.

Проверка.

Сумма 5 + 5 + 6 + 8 = 24; произведение 5 5 6 8 = 1200 и 1200 > 24 в 50 раз.

Искомые четырёхзначные числа мы получим перестановкой цифр 5, 5, 6 и 8.

Так как это перестановка с повторениями, то количество всех четырёхзначных чисел равно 4! : 2! = 1 2 3 4 : (1 2) = 24 : 2 = 12. Вот эти числа:

5568, 5586, 5685, 5865, 6855, 8655, 5658, 5856, 6585, 8565, 6558, 8556.

Ответ: а) 2355; б) нет; в) 5568.

Числа 1, 2, 3, 4, 5, 6, 7, 8, 9, 16 произвольно делят на три группы так, чтобы в каждой группе было хотя бы одно число

Задача. Числа 1, 2, 3, 4, 5, 6, 7, 8, 9, 16 произвольно делят на три группы так, чтобы в каждой группе было хотя бы одно число. Затем вычисляют значение среднего арифметического чисел в каждой из групп (для группы из единственного числа среднее арифметическое равно этому числу).

а) Могут ли быть одинаковыми два из этих трёх значений средних арифметических в группах из разного количества чисел?

б) Могут ли быть одинаковыми все три значения средних арифметических?

в) Найдите наименьшее возможное значение наибольшего из получаемых трёх средних арифметических.

Решение.

а) Да. Возьмём группы:

1) 1, 2, 8 и 9. Среднее арифметическое (1+2+8+9) : 4 = 5.

2) 3 и 7. Среднее арифметическое (3+7) : 2 = 5.

3) 4, 5, 6 и 16. Среднее арифметическое: (4+5+6+16) : 4 = 7,75.

Средние арифметические первых двух групп равны.

б) Попробуем составить группы так, чтобы их средние арифметические были равны.

Пример 1.

1) 1, 2, и 16. Среднее арифметическое

2) 3, 4, 8 и 9. Среднее арифметическое (3+4+8+9) : 4 = 6.

3)  5, 6 и 7. Среднее арифметическое: (5+6+7) : 3 = 6.

Нет, не получилось. А, может, так:

Пример 2.

1) 5 и 8. Среднее арифметическое (5+8) : 2 = 6,5

2) 6. Среднее арифметическое самого числа равно этому числу  6.

3)  1, 2, 3, 4, 7, 9 и 16. Среднее арифметическое: (1+2+3+4+7+9+16) : 7 = 6.

Опять не то. Или так:

Пример 3.

1) 6. Среднее арифметическое самого числа равно этому числу  6.

2) 3 и 9. Среднее арифметическое (3+9) : 2 = 6.

3)  1, 2, 4, 5, 7, 8 и 16. Среднее арифметическое:

Пример 4.

1) 4 и 8. Среднее арифметическое (4+8) : 2 = 6.

2) 3 и 9. Среднее арифметическое (3+9) : 2 = 6.

3)  1, 2, 5, 6, 7 и 16. Среднее арифметическое:

Не получается. Но мы заметили, что каждое из средних арифметических близко к среднему арифметическому всех десяти чисел:

(1+2+3+4+5+6+7+8+9+16) : 10 = 61 : 10 = 6,1. И если бы средние арифметические всех трёх групп были равны, то они были бы равны, именно, числу 6,1, но это невозможно, потому что: 1) сумма чисел в каждой группе выражается целым числом; 2) ни одну из сумм чисел в любой группе, не придется делить на 10, максимум на 7, как в примере 3.

Вывод: нет, одинаковыми все три значения средних арифметических быть не могут.

в) Примеры 1-4, рассмотренные в пункте б), позволяют понять непростой вопрос, на который нам предстоит ответить: «найдите  наименьшее возможное значение наибольшего из получаемых трёх средних арифметических».

Очевидно, что выбирать наименьшее придется

(смотрите примеры 1-4), так как наибольшие средние арифметические групп мы получим только если они будут максимально приближенными друг к другу, а именно: средние арифметические двух групп будут равны 6, а среднее арифметическое третьей группы будет больше шести. Понятно, что это третье число не может быть меньше или равно 6,1. Так как ни одна группа не может насчитывать больше 7-ми членов,

Наверх